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Abstract—An axisymmetric Boussinesq plume in a uniform ambient fluid is considered. 

The classical similarity solution of Morton et al. (1956) is modified to account for 

diffusive losses of buoyancy flux and momentum flux. This leads to a buoyancy flux and 

a momentum flux that both tend to zero at infinite height. The mass flux at infinity will 

tend to a finite value that depends on the diffusion parameters for buoyancy and 

momentum. 
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1. Introduction 

Plumes are relatively slender vertical flows rising above concentrated buoyancy 

sources. Fire disasters produce strong buoyant plumes. Plumes are important in 

local meteorology, especially in connection with formation of cumulus clouds. 

Some basic mathematical solutions for plumes can be found when a singular 

heat source is taken as the driving mechanism. The most important of these is 

the celebrated similarity solution of Morton et al. (1956), hereafter called the 

MTT solution. 

The MTT solution with the Boussinesq approximation is mathematically 

compact. It accounts for mass balance, and it preserves momentum and energy 

within the plume. However, its obvious shortcoming is that it possesses no 

physical length scale. Any similarity solution will assume that the plume rises to 

infinite height. According to a similarity solution, the plume velocity will 

ultimately tend to zero, but the upward mass flux will increase indefinitely. In 

spite of its mathematical convenience, a similarity solution lacks physical 

consistency in that it implies an indefinite amount of mass entrainment, up to 
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infinite height. In reality, the entrainment of momentum from outside into the 

plume must vanish asymptotically at great heights, when the plume velocity 

slows down sufficiently. Opposing the entrainment, there will be diffusive losses 

of momentum and buoyancy, from the plume to the surrounding fluid. These 

diffusive losses introduce physical length scales in the vertical direction. A well-

known example of such a length scale is the altitude of a cumulus cloud above 

the heated ground. 

Convective flows in the atmosphere or ocean occur as recirculating 

convection cells. This means that a plume cannot be considered as an isolated 

phenomenon. All plumes in the atmosphere and ocean occur as parts of 

convection cells. This fact suggests another physical shortcoming of the MTT 

solution. It disregards the fact that a rising plume occupies only a narrow section 

of the convection cell that it belongs to. A narrow upwelling plume should 

therefore be surrounded by a broad and slow downwelling flow. However, in the 

course of this study it becomes clear that the present modifications of the MTT 

model are insufficient to construct a recirculating convection cell. 

The MTT paper succeeded a seminal paper on plumes by Batchelor (1954), 

who also developed similarity solutions. After MTT a lot of papers have 

followed. To our knowledge, the physical validity of similarity solutions has not 

been addressed. A recent work by Scase et al. (2006) generalizes the 

axisymmetric MTT model in a fruitful way by starting from the basic 

hydrodynamic equations to take time-dependence into account. 

2. The MTT model 

We consider a rising axisymmetric plume in a fluid that would otherwise be at 

rest. The flow is generated by a singular heat source. The gravitational 

acceleration is denoted by g. The axisymmetric flow depends on the vertical 

coordinate z and the radial coordinate r. We define z = 0 by the concentrated 

heat source that drives the flow. We define the radial coordinate r as the 

horizontal distance from the vertical line through the heat source. 

The classical MTT plume model assumes ‘top-hat’ profiles for the density 
),( zr  

)(),(),( zbrzzr   , 

)(,),( zbrzr   ,                                        (1) 

and the vertical velocity ),( zrw  

)(),(),( zbrzwzrw  , 

).(,0),( zbrzrw                                          (2) 
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Here we have introduced the plume radius b(z) and the density of the ambient 

fluid   We will consider only the simplest case, where   is taken constant 

so that the ambient fluid is assumed uniform. We take the Boussinesq 

approximation where density variation is included only in the buoyancy term of 

the momentum equation. The ‘top-hat’ description, Eqs. (1)–(2), assumes that 

the plume radius b(z) can be sharply defined at each height z. Moreover, it 

replaces the density and velocity fields within the plume by their average values 

taken over the plume cross section at each given height z. In the MTT solution, 

the only communication with the fluid outside the plume is the entrainment of 

fluid by turbulent mixing into the plume. It is assumed that no loss of 

momentum or energy from the plume to the surrounding fluid will take place. 

The entrainment constant α is introduced by the standard entrainment 

assumption 

u r│ wzbr  )( ,                                                (3) 

where ur is the inward radial velocity of the surrounding fluid at the boundary of 

the plume. This radial entrainment velocity ur is thus assumed to be proportional 

to the vertical velocity in the plume at each vertical level z. In this theory, the 

radial velocity is significant only at the plume boundary. Once the entrained 

fluid has entered the plume, it is assumed to be thoroughly mixed so that the net 

average flow becomes vertical. In this averaging procedure one cannot include 

continuity in radial velocity across the plume boundary. 

We introduce the mass flux πQ, the momentum flux πM, and the buoyancy 

flux πF for the steady plume. By definition we have 

)()()( 2 zzwzbQ  ,                                            (4) 

)()()( 22 zzwzbM  ,                                           (5) 

)).(()()( 2 zgzwzbF                                        (6) 

This implies the relationships 

QMw / ,  )/( FgQgQ   ,  MQb / ,  .//)(' QFgg       (7) 

 

Here we have introduced the ‘reduced gravity’ g'. The conservation of mass, 

momentum, and energy in a steady plume is expressed by the equations 

MdzdQ  2/ ,                                            (8) 

MQFdzdM //  ,                                                 (9) 

 0FF constant,                                               (10) 

respectively. 
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3. Diffusive losses of buoyancy and momentum 

Since the buoyancy flux F0 is constant in the MTT model described above, it 

parameterizes the singular hot spot in the origin. The energy equation is simply 

F = constant for a steady plume in homogeneous ambient fluid. Let us take into 

account a turbulent diffusive loss of energy by postulating the relationship 

),exp()( 0 zFzF                                              (11) 

where F0 remains the buoyancy flux specified by the MTT solution, and a 

spatial decay parameter γ is introduced, assumed to be constant. With this 

modification, F0 still parameterizes the hot spot in the origin. The energy 

equation that is implicitly assumed by the solution, Eq. (11) is 

FdzdF / ,                                               (12) 

replacing the previous energy conservation equation dF/dz=0. The solution, Eq. 

(11) is a reasonable starting point, because it introduces a physical length scale 

1/γ. Since the MTT solution does not contain any length scale, γz immediately 

constitutes itself as a dimensionless vertical coordinate, which establishes a 

physical length scale. 

A physically consistent description of a diffusive plume must also take into 

account a diffusive loss of momentum. We modify the momentum equation, Eq. 

(9) as follows 

ΓMMQFdzdM  // ,                                        (13) 

where an additional spatial decay parameter Γ for momentum is introduced, 

assumed to be constant. Γ is introduced in analogy with the buoyancy decay 

parameter Γ introduced above. This is a simpler model of turbulent momentum 

loss than the averaged Navier-Stokes momentum equation with eddy viscosity. 

However, a Navier-Stokes equation cannot be formulated for the plume in the 

‘top-hat’ description, since the relevant velocity gradients have already been 

eliminated by the averaging procedure. 

We will now derive the plume solution following from the starting point of 

Eqs. (11) and (13). We still assume that mass is conserved within the plume, 

with the application of the entrainment hypothesis. We introduce dimensionless 

length, velocity, mass flux, momentum flux, and buoyancy flux, respectively, by 

the definitions 

zz ˆ ,    
3/1

0))/((ˆ Fww  ,    )/()(ˆ 3/23/1
0

3/5
  FQQ , 

)/()(ˆ 3/13/2
0

3/4
  FMM , 0/ˆ FFF  . 
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From now on, we work with dimensionless quantities and drop the hat 

superscripts. From Eqs. (8) and (13) the governing equations are 

MdzdQ 2/  ,      MMQFdzdM  // ,                      (14) 

expressing conservation of mass and a diffusive loss of momentum. Here we 

have introduced a dimensionless parameter β defined as 

 / ,                                                    (15) 

which may be considered as a turbulent Prandtl number, expressing the relative 

rate of momentum diffusion compared with buoyancy diffusion. For strong 

turbulence (large Reynolds numbers), it is plausible that β will be of order unity. 

The postulated loss of buoyancy flux is given by 

)exp()( zzF  .                                               (16) 

In order to solve this set of governing equations we define 

)()()( zzQzQ S  ,        )()()( zzMzM S  ,                      (17) 

thereby introducing two unknown functions φ(z) and μ(z) that represent the local 

relative deviations from the steady MTT solution. The MTT similarity solution 

is represented by QS(z) and MS(z), given by 

3/53/1)10/9)(5/6()( zzQS  ,  3/43/2)10/9()( zzM S  .         (18) 

This is called a similarity solution since it assumes no other length scale than the 

vertical coordinate itself. 

We will now compute the unknown functions φ(z) and μ(z) in this diffusive 

plume problem. Their boundary conditions are simply 

1)0()0(   ,                                             (19) 

since the solution coincides with the MTT solution near the source. The 

governing equations for φ(z) and μ(z) are determined by inserting their 

definitions, Eq. (17) into Eq. (14). The resulting equations are 

)()()(')5/3( zzzz   ,                                  (20) 

 

)(/)()exp()())4/3(1()(')4/3( zzzzzzz   .              (21) 

Eqs. (20) and (21) valid for all z>0 with the spatial ‘initial’ conditions, Eq. (19). 

It is worth noting that Eqs. (20)–(21) are independent of the entrainment 
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constant α. The mathematical problem is thus a one-parameter problem in terms 

of the dimensionless momentum diffusion parameter β. The dependence of 

buoyancy diffusion is implicit through the definition of dimensionless variables. 

This nonlinear system of two first-order Eqs. (20)–(21) will be solved 

numerically by MATHEMATICA. Because of the factor z accompanying the 

derivatives, we have to start the integration with a value of z slightly greater than 

0. Some results are shown in Fig. 1 and 2. Fig. 1 shows the functions φ(z) and 

μ(z). Fig. 2 gives the mass flux Q(z) (upper graphs) and the momentum flux 

M(z) (lower graphs). The case β=1 is represented by solid curves. The dotted 

curves represent β=1/3, while the dashed curves represent β=1/3. Since β is a 

kind of turbulent Prandt number, it should be of order unity. 

 

 

Fig. 1. The functions φ(z) (upper curves) and μ(z) (lower curves). These functions are 

displayed for β=1/3 (dotted curves), β=1 (solid curves), and β=3 (dashed curves). 

 

Fig. 2. The upper set of curves represent mass flux (5/(6 α))(10/(9 α))
1/3

Q(z). The lower 

set of curves represent momentum flux (10/(9 α))
2/3

M(z). The functions are displayed for 

β=1/3 (dotted curves), β=1 (solid curves), and β=3 (dashed curves). 
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From Fig. 2 we see that the momentum flux M(z) has a maximum value 

for a certain value of z, depending on β. On the other hand, there is no 

maximum value for the mass flux Q(z). Further computations show that it 

increases with increasing z, and it reaches a constant asymptotic value, 

dependent on β when z→∞. In Table 1 we show Q(∞) for various values of β, 

together with the maximal values for M(z). There may be a certain amount of 

roundoff errors in this system where boundary conditions are specified only at 

z=0, and the numerical integrations for determining Q(∞) in Table 1 have all 

been terminated at z=50. The present coupled system of first-order equations 

seems to defy analytical treatment, since the variables are not separable. Table 

1 shows that z>1 at the point of maximum momentum flux, even when the 

momentum diffusion is relatively strong. This is because the diffusive loss of 

momentum is compensated by the buoyancy source up to unit height above the 

heat source. 

 

Table 1. The mass flux at infinite height and the maximum point for the momentum flux 

for various values of the dimensionless momentum diffusion parameter β 
 

β (5/(6α))(10/(9 α))
1/3

Q(∞) (10/(9 α))
2/3

Mmax z at M=Mmax 

0.2 25.02 1.1237 3.141 

0.5 12.77 0.8352 2.386 

1   9.39 0.6188 1.926 

2   7.34 0.4322 1.608 

5   5.42 0.2523 1.356 

The dimensionless expressions for the plume velocity and plume radius are 

)(/)())10/(9))(6/(5()( 3/1 zzzzw  ,                        (22) 

)(/)()5/6()( zzzzb  .                                            (23) 

In Fig. 3 we show the radius of the plume as a function of the height, 

represented by (5/(6 α)) b(z), for some values of β. For comparison, the MTT 

solution is represented by an exact cone that gives the common tangent for these 

three curves at the apex in the origin. 

Contrary to the motivation for this work, it proves impossible to construct 

an outer solution that gives a closed convection cell, since the mass flux does 

not tend to zero as z→∞. There is no balance between sources and sinks in the 

outer field, so the streamlines will not be closed curves. 



 108 

 

Fig. 3. The plume radius as a function of height represented by (5/(6 α))b(z). It is 

displayed for β=1/3 (dotted curve), β=1 (solid curve), and β=3 (dashed curve). 

4. Conclusions 

An aim of the present work was to model consistently the inner and outer flow 

field of a plume. In order to achieve this, we included diffusive losses of 

momentum flux and buoyancy flux from the plume to the ambient fluid, which 

is assumed of constant density. In order to model the outer flow, it is necessary 

that the mass flux of the plume ultimately tends to zero with increasing height. 

The present work shows that this is impossible when the density of the ambient 

fluid is assumed to be constant. The mass flux in the plume will not tend to zero 

with increasing height, but it will settle at a constant value. Therefore, no 

recirculating convection cell can be described by the present type of modeling. 

Any model of plume flow in a fluid must be irreversible in time. In the 

classical MTT solution, the only entropy producing mechanism is the mass 

entrainment into the plume. As a contrast, the present model takes into account 

three irreversible phenomena: (i) Turbulent entrainment from the ambient fluid, 

incorporated into the mass balance. (ii) Turbulent diffusive loss of momentum 

flux to the ambient fluid. (iii) Turbulent diffusive loss of buoyancy flux to the 

ambient fluid. While these three phenomena are still being modelled in a highly 

simplified way, their descriptions in the present work are mutually consistent. 
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