
Mathematical Modelling of the Max 2-Cut
Problem and Solving the Relaxed Model

January 26, 2022

Montaz Ali
School of Computer Science and Applied Mathematics
Witwatersrand University, Johannesburg

1 Max-Cut Problem

The maximum cut (Max-Cut) problem is one of the simplest graph partitioning problems,
yet it is one of the most difficult combinatorial optimization problems to solve. The
objective of Max-Cut is to partition the set of vertices of a (undirected) graph G = (V,E)
into two subsets, such that the sum of the weights (cut value) of the edges having one
endpoint in each of the subsets is maximum. This problem is known to be NP-Complete.

Let G = (V,E) be an undirected and connected graph, where V = {1, · · · , n}, and E
is the edge set. If the edge (i, j) ∈ E connects vertices i, j ∈ V , we associate a weight
wij ≥ 0 with the edge, wij = wji. We denote the number of edges by m. If (i, j) is not
edge in the given graph then we consider wij = wji = 0.

The more general problem is known as the Max-k-Cut problem (see Fig. 1) which reduces
to Max-Cut (Max-2-Cut) for k=2. The max-k-cut problem is to partition V into subsets
{V1, V2, · · · , Vk}, k ∈ [2, n], Vi 6= ∅, Vi ∩ Vj = ∅, ∀i 6= j, such that the weight function

w(V1, V2, · · · , Vk) =
∑

1≤r<s≤k

∑
i∈Vr,j∈Vs

wij, (1)

is maximized, where the edge weights wij = wji are such that wij = 0 for [i, j] 6∈ E.

1

Figure 1: Example of max k-cut

We now present the Max-Cut problem as a mathematical optimization problem. In the
Max-Cut problem (see Fig. 2) a cut as a partition of V into two disjoint subsets (not
necessarily equal) S and S̄ (=V \ S).

Figure 2: Example of max 2-cut

The weight (cut value) of the cut (S, S̄) is given by the function W : S × S̄ → R and is

2

defined as
W (S, S̄) =

∑
i∈S, j∈S̄

wij.

Clearly, a maximum cut is defined by the following optimization problem:

Max-Cut = max
∀S⊆V

W (S, V \ S).

We can formulate Max-Cut as the following integer quadratic programming problem:

{
maxx

1
4

∑n
i=1

∑n
j=1 wij(1− xixj)

s.t. xi ∈ {1,−1}, i ∈ {1, · · · , n}.
The problem can be written equivalently as{

max f(x) = 1
2

∑
1≤i<j≤nwij(1− xixj)

s.t. xi ∈ {1,−1}, i ∈ V.
(2)

To check the above formulation (2) is correct, we define the subset S ⊆ V such that
S = {i

∣∣xi = 1}. It can be easily seen that S induces a cut (S, S̄) with corresponding
weight (cut value) equal to:

W (S, V \ S) =
1

2

∑
1≤i<j≤n

wij(1− xixj).

Consider the following example graph in Fig. 3 and write down the mathematical model
the max 2-cut problem for the graph where you may want to take some some wij < 0
when testing your examples. Notice that xixj = −1 exactly when the edge (i, j) crosses
the cut.

Figure 3: Example graph for max 2-cut

3

1.1 The SDP Formulation

The general form of the SDP is given as follows:

maxC •X, s.t
Ai •X = bi ∀i
X < 0

(3)

where X < 0 means the matrix X is positive semi-definite; A•B = 〈A,B〉 = Trace(ATB) =∑
i

∑
j aijbij is the matrix inner product of matrices A and B. It is easy to prove that

trace(AB) = Trace(BA) = Trace(BTAT).

The first step of converting the integer program into an SDP is known as relaxation. A
relaxation of an optimization program is another optimization program which, ideally, is
easier to solve and and every solution of original program is also a solution of the new
program with the same (or related) objective value. Our scheme is as follows:

• convert the integer program into a semi-definite program (SDP),

• solve the semi-definite program,

• and then convert the solution of SDP into an integer solution {1,−1} again.

In the case of Eqn (2), we change the domain of xi’s to be unit vectors instead of integers
in {1,−1}. In particular, we write problem as

maxyi
1
2

∑
(i,j)∈E wij(1− yTi yj)

s.t. ||yi|| = 1, i ∈ V, yi ∈ Rn.
(4)

The above problem has an equivalent SDP formulation as follows:

max 1
2

∑
(i,j)∈E wij(1− yTi yj)

s.t. ||yi|| = 1, i ∈ V, yi ∈ Rn.
(5)

where we have written yi = (0, 0, · · · , xi)
T . We now introduce Xij = yTi yj and write the

above problem as
maxyi,X

1
4

∑
i,j∈V wij(1−Xij)

s.t. Xii = 1, i ∈ V, yi ∈ Rn.
X < 0

(6)

(The extra factor of 1/2 is because we count each edge (i, j) twice now.) Consider the
following notation

Lij =

{ ∑
k wik if i = j

−wij if i 6= j

4

It now follows that

1
4

∑n
i=1

∑n
j=1 wij(1−Xij) = 1

4

(∑n
i=1

∑n
j=1 wij −

∑n
i=1

∑n
j=1 wijXij

)
= 1

4

(∑
i

(∑
j wij

)
+
∑

i,i 6=j

∑
j,j 6=i LijXij

)
= 1

4

(∑
i LiiXii +

∑
i 6=j LijXij

)
= 1

4
〈L,X〉

= 1
4
L •X

Hence the resulting SDP is as follows:

max 1
4
L •X, s.t

X • eieTi = 1 ∀i
X < 0

(7)

where Xii = X • eieTi and ei is the i-th coordinate vector.

5

