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Reminder of Experimental Setup



Approach Taken

I Understand fundamentals of actual situation
I Attack a simplified problem

I 1-D version
I No Heat loss to substrate or air

I Model heat loss in 1-D version



Physical Setup

Figure 1: Simplified view of experiment

Fundamental equations

∂T
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Complications

I Thin Layer

I Conductivity Ratio About 100 : 1

I Hard To Asses Heat Loss To Atmosphere



Aim

How best to determine thermal properties of film
(what ω to use ..............)



Wolf’s arrangement
A simpler arrangement has been explored by Wolf.

Figure 2: Wolf cuts off the film and heats along a line: much harder
experimentally, much easier analytically



Equations

Heat Equation : ρfCfTt (x, t) = kf Txx (x , t) (1)

Heat Input : − kfTx (x, t)
∣∣∣
x=0

= q0e
iωt (2)

We expect a steady state ( or oscillatory) solution of the form

T (x , t) = e iωtX (x) (3)



Scaling
Set

T = To + ∆TT ′

ωt = t ′ (4)

x = x0x
′

Substituting (4) into (1) we obtain

ρf Cf ∆Tω =
kf ∆T

x20
T ′x ′x ′ (5)

This leads to

x20 =
Kf

ω
⇒ x0 =

√
Kf

ω
(6)

with Kf the diffusivity given by

Kf =
kf
ρf Cf

(7)

The scaled result is
T ′t′ = T ′x ′x ′ (8)



Scaling

Substituting (4) into (2) we obtain

−kf ∆T

x0

∂T ′

∂x ′
= q0e

it′ (9)

This leads to
∆T =

q0√
kf ρf Cf ω

The result of scaling is

∂T ′

∂x ′

∣∣∣
x=0

= −e it′



Observations

x0 ∝
1√
ω

x0 ∝
√
Kf

∆T ∝ 1√
ω

∆T ∝ q0



The substitution of (3) into (8) gives

Xxx − iX = 0 (10)

with
X (x) = Ae

− 1√
2
(1+i)x

(11)

with Constant of integration A given by

A =

√
2

(1 + i)
(12)

Thus,

X (x) =

√
2

(1 + i)
e
− 1√

2
(1+i)x

(13)

Hence,

T (x , t) = e
−x√

2 e
i
(
t−−x√

2
−π

4

)
(14)



Results For No Heat Loss Case (Insulated film)

Figure 3: Temperature Profiles for different t



Heat Losses Case

ρf Cf Tt = kf Txx − γ(T − T0) (15)

−kf Tx = q0e
iωt (16)

with the same scaling we obtained

T ′t′ = T ′x ′x ′ − µT ′

−T ′x ′ = e it

where µ is scaled heat loss parameter and it is

µ =
γ

ρf Cf ω
.
Thus,

X (x) =
1√
i + µ

e(
√
i+µ)x (17)

T (x , t) = e it
1√
i + µ

e(
√
i+µ)x (18)



√
µ+ i =

√
r0

[
cos

(
π

4
− φ

2

)
+ i sin

(
π

4
− φ

2

)]
(19)

where tan (φ) = µ.
Hence,

X (x) =
1√
µ+ i

[
e−
√
r0[cos(π

4
−φ

2 )x]e−i
√
r0[sin(π

4
−φ

2 )x]
]

(20)

As µ→ 0 , we go back to the simple case.
(20) approximately gives

AMP (x) =

[
1−

(
φ2

2

)]
e
−1√
2
(1+φ

2 )x (21)



Results For Heat Loss Case (Not insulated)

Figure 4: Temperature Profiles for different t



Conclusion

We presented the general problem and examined the situation in
which heat was supplied along a line:

I In the special ideal case in which there was no heat loss, we
found that waves travels away from the line source with
decaying amplitude

I The maximum temperature change reached was

q0√
kf ρf Cf ω

I These results can be used to determine Kf , kf and ρf Cf

I We modelled effect of heat losses and found formulae that
would be used to account for the heat losses

I If heat loss parameter is less than 0.3, the effect is minor.


