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A numerical method, based on the Zakharov equation in three dimensions, is developed to study the 
nonlinear dynamics of deep water gravity waves. We focus primarily on systems describing the 
evolution of hydrodynamic surface waves, considering a thick incompressible fluid spanning across all 
space available and subject to gravity. The reference height to the resting state is z = 0. In the case of 
hydrostatic equilibrium, the bottom of the water is located at a distance H from the water surface. This 

depth is considered constant. The height of the surface wave is denoted x,y,t) and the volume 

occupied by the fluid is restricted by –H < z < (x,y,t). This study shows that rogue waves are generated 

by primary waves whose directions of propagation are nearly parallel (i.e. 0 < /6). This ensures their 

unexpected character (expressed by the quasi-spontaneous passage from a calm situation to a sea 
greatly agitated).  
 
Key words: Zakharov equation, nonlinear dynamics, deep water gravity waves.  

 
 
INTRODUCTION 
 
Since seamen roam the oceans, they are impressed by 
these huge rivers relatively hostile that inspires respect 
and fear. As evidence of this fear, many legends have 
always circulated such stories, expressing the existence 
of mermaids’ shipwrecks (Touboul, 2007; Chambarel, 
2009). The ghost ships savagely attack ships, or even 
beliefs about the Bermuda Triangle, where ships 
disappear inexplicably. Among these legends, is that of 
rogue waves that correspond in many respects to deep 
water gravity waves (Touboul, 2007). Many accounts of 
seamen have alluded to walls of water rising for no 
reason in the middle of the sea and hitting ships with 
extraordinary violence. These stories were not credible 
until 1978, when the cargo ship "Munchen" disappeared 
under mysterious circumstances. This vessel at the 
forefront of naval technology was heading in the North 
Atlantic, with no apparent problems until the night of 
December 12. Given that the weather service recorded 
no storm that night, it is reasonable to believe that a rogue 
 
 
 
*Corresponding author: E-mail: cesar.mbane@yahoo.fr. Tel: 
(+237) 77 40 49 23. 

wave is the only plausible explanation for this shipwreck. 
In 1980 (Chambarel, 2009), Philippe Lijour, captain of the 
tanker "Esso Lanuedoc" demonstrated the existence of 
rogue waves with a photo as proof. The existence of 
rogue waves is now universally recognized (Onorato et 
al., 2004; Socquet et al., 2005; Dyachenko and Zakharov, 
2005; Kharif and Pelinovsky, 2003; Wu and Yao, 2004; 
White and Fornberg, 1998), and many images on the 
extent of damage caused by these monsters of the ocean 
are available online on the Internet. However, the 
physical processes responsible for the formation and 
spread of the phenomenon as well as its prediction are 
not completely understood. Contrary to popular belief 
Mbane (2009) demonstrated that, the natural phenol-
menon like rogue waves are not just spectacular events 
accessible to routine observations and satellites images. 
Rogue waves are a combination of complex physical 
processes that occur under the accuracy conditions. 
Numerical computations (Atock et al., 2010; Shener, 
2010; Leblanc, 2008; Batra et al., 2006; Trulsen et al., 
2000) offers tremendous opportunities for understanding 
of the physical phenomena whose analytical solutions 
are, at the present stage of development of mathematics, 
difficult to obtain. Our paper  presents  the  application  of  
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Figure 1 . Sketch of the study area. The height of the surface wave denoted (x,y,t) is proportional to: (i) The 

difference between the atmospheric pressure at z = 0 and z =  (ii)The temperature of ocean surface (that is, 

the density, of water decreases as temperature increases).  
 

 
 

Zakharov equation in three dimensions to deep water 
gravity waves, which is an important tool for acquiring 
information on the scientifically conceivable reasons of 
formation of rogue waves. In this regard, additional 
assumptions are implemented to make the transition from 
hydrodynamic Euler equations to Sakharov’s modulation 
instability. The study area is schematically shown in 
Figure 1. 
 
 
BASIC FORMULATION OF ZAKHAROV EQUATION 
 
Additional assumptions 
 
The general fluid continuity equation is given by: 
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This leads to the continuity equation for an 
incompressible fluid 
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The velocity perpendicular to the surface of the water and  

to the impermeable bottom is zero: 
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Here n


 is the unit vector normal to the surface. When the 

bottom is parallel to the undisturbed surface  
 
w = 0, z = -H              (4) 
 
And the kinematic boundary condition at the surface 
becomes 
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where the surface of the water is allowed to change with 
time. The last condition comes from the Newtonian force 
on a moving fluid element 
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For an inviscid fluid this simplifies to 
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When the flow is irrotational 
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The velocity potential is also given by 
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Given the continuity equation 
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The kinematic boundary condition at the bottom 
 

0.  n
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The kinematic boundary condition at the surface 
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Integrating equation (7) with respect to x,y,z, one can get 
the Bernoulli equation, the arbitrary functions of 

integration ),,(1 tzyC , ),,(2 tzxC , ),,(3 tyxC must be 

the same function C(t), which can be absorbed by the 
velocity potential, yielding exactly the same flow 
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Here we have made the assumption that g


is constant 

 gg  ,0,0


 making the gravitational force conservative 

and making it possible to define a potential energy. 
Furthermore, we have made the assumption that the 
surface tension can be neglected. At the surface, z 

=for water flows the space above the water is the 
atmosphere where the density of air is only about 1/800 
times that of water and the pressure is almost constant 
along the surface. Since this constant pressure has no 
important influence on the solution, we can put P=0, thus  
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the dynamical boundary condition at the surface of the 
water becomes 
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Equation 10, 11, 12 and 14 are basis for all the following 
calculations. By introducing the stream function 

),,( tyx , defined by ),,,(),,( tyxtyx   , 

Equations 12 and 14 become: 
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Materialization of the 3D interface between Euler and 
Zakharov equations 
 
Zakharov equations were obtained for the first time in 
1968 for ultra deep waters (Zakharov, 1968) and for deep 
waters by Zakharov and Kharitonov (1970). We will get 
those Zakharov equations starting from the 
considerations of Yuen and Lake (1980). The use of 
kinematic boundary conditions (Equation11 and 12) and 
dynamic (Equation 14), and the Fourier transform of the 
Dirac δ function and the development in Taylor series of 
hyperbolic functions yields the Fourier transform of the 
stream function ),,( tyx  at the free surface of water: 
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Equation 17 is inverted iteratively. It is natural to choose 
the starting guess as 
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The Fourier transform of the velocity vector at the water surface is given by (19): 
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Equation 15 and 16 are modified using relations 17, 18 
and 19, to obtain the Fourier transforms of the dynamic 
and kinematics boundary conditions. 
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Equation 20 and 21 are combined into a single equation 
by introducing the complex function b given by (22): 
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From that moment, we define the Fourier transforms of  

and ),,( tyx  as function of b and its conjugate b*. 
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Then multiplied (Equation 20) by (g/2)

1/2
 and (Equation  

21) by (i(/2g)
1/2

). Sums of the terms are given by (25). 
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Figure 2. Colliding of two surface waves at an angle  

 
 
 

In Equation 26 below, the surface wave 
),( tkb


 is 

decomposed into a principal component B and two minor 
components B' and B'': these components are all 
functions of t, t1= t and t2=

2
t. 

 

          ti ketttkBtttkBtttkBtkb
 

 21

''3

21

'2

21 ,,,,,,,,;,


(26)     

 
We derive the surface wave (26) with respect to time and 
substituted in (25). Then taking  = .B, we obtain what 

we call the Zakharov integral equation (Equation 27). 
 

   
32132132

*
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ti
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 

 
 (27) 

 
 
METHODOLOGY AND APPROACH 

 
Determination of the coupled nonlinear Schrödinger equations 
(CNLSE) 

According to the nonlinear Schrödinger equation (NLSE), the 
evolution of an unstable wave group generates a single wave that 
can reach up to 3 times the amplitude of the initial carrier wave (that 
is, the wave energy is basically concentrated in a single wave 
number). Let us consider a surface wave whose main component  

is of the form tietka .).,(   , then Zakharov's integral 

equation for this type of wave has the form: 

 

  32143214,3,2,11
1 kdkdkdkkkkTiai
t

a 
 




     (28) 

 
We consider the case of energy concentrated mainly around two-
wave numbers (Figure 2): 
 

      
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b

ti

a
ba ekkBekkAka

 



           (29) 

 
Where A and B satisfy the CNLSE (Grönlund et al., 2009; Zakharov 
et al., 2006): 
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We now consider the following plane wave solution of CNLSE: 
 

A= A0.(1+a).e
-i(.t+a)

 , B= B0.(1+b).e
-i(t+b)                 

          (32) 

Where a, b, a, b are small perturbations in amplitude and of the 
wave solution. We substitute (32) in (30) and (29), then linearize the 
resulting equations and use  the  normal  mode  approach, with  the  
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Figure 3. The normalized growth rate « Gain » plotted as a function of (K,L). Here we have used  = /8, then rotate 
the figure to get an idea of the evolution of L and K for a fixed value of "Gain". The left-hand panels show the cases 
with single waves while the right-hand panel shows the case of interacting waves. 

 
 
 

wave number, ),( LKK


 and the angular frequency () of the 

perturbation, to obtain the following dispersion equation: 
 

   






 2

0

2

0

222

0

2

0

222

0

2

0

2 16)( BABAKBAK   (33) 

 

 
Approach 

 
Calculations are performed by a MATLAB program. The curves are 
shown in 3D and can be rotated according to our desire. The choice 
of the number of iteration involved 200 instead of 100 (which 
produced figures with color coding irrelevant). 

 
 
RESULTS AND DISCUSSION 
 
In the following, we numerically solve our nonlinear 
dispersion relation (33) and investigate the full dynamics 
of nonlinearly interacting deep water waves subjected to 
modulation or filamentation instabilities. After that, we 

present the growth rate “gain” (the imaginary part of  in 
Figures 3, 4, 5 and 6, where we have studied the impact 

of different angles on the growth rates for interacting 

waves. In the left-hand panels of Figure 3a, b and c  and 
Figure 4 a, b and c, we show the single wave cases, 
which exhibit the standard Benjamin-Feir instability 

(Segur et al., 2005) tilted by the angle  in the (K,L) 
plane. The right-hand panels show the cases of 
interacting waves. We can see from Figure 3c that a 

relatively small  = /8 gives rise to a new instability with 
a maximum growth rate of more than twice as large as 
that of the single cases, in the direction of the dichotome. 

For a larger angle  = /4, displayed in Figure 4c, we see 
that the two waves do not interact to enhance the linear 
growth rate significantly. 

One can also observed that, in Figure 6c (where  = 

/3), the two waves do not interact to enhance the growth 

rate significantly. While in figure 5c, where the angle  is 

equal to /6, the waves interact much more, the gap 
between the two superposed surface waves, 
characterized by dark blue, is more pronounced in Figure 
6c than in Figure 5c. 

Obviously the rogue waves are generated by primary 
waves whose directions of propagation are nearly parallel 

(that is, 0 <  < /6). This ensures their unexpected 
character (expressed by the quasi-spontaneous passage 
from a calm situation to a sea greatly agitated).  All  these  
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Figure 4. The normalized growth rate « Gain » plotted as a function of (K,L). Here we have used  = /4, then 
rotate the figure to get an idea of the evolution of L and K for a fixed value of "Gain". The left-hand panels show 

the cases with single waves while the right-hand panel shows the case of interacting waves. 

 
 
 

 
 

Figure 5. The normalized growth rate « Gain » plotted as a function of (K,L). Here we have used  = /6. 

The left-hand panels show the cases with single waves while the right-hand panel shows the case of 
interacting waves. 
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Figure 6. The normalized growth rate « Gain » plotted as a function of (K,L). Here we have used  = /3. 

The left-hand panels show the cases with single waves while the right-hand panel shows the case of 
interacting waves. 

 
 
 
results will have relevance to the nonlinear instability of 
colliding water waves, which may interact nonlinearly in a 
constructive way to produce large amplitude freak waves 
in the oceans. 
 
 
Conclusion 
 
The existence of rogue waves is universally recognized 
and images on the extent of the damage caused by these 
monsters of the ocean are available online on the 
Internet. However, the physical processes responsible for 
the formation of these phenomena as well as its 
prediction are not completely understood. This paper 
shows that rogue waves are a combination of complex 
processes that occur under accuracy conditions like 
interference between primary waves whose directions of 
propagation are nearly parallel. Rogue waves are not 
waves that appear from nowhere and disappear without 
trace as stated by some authors: according to the NLSE, 
the evolution of an unstable wave group generates a 
single wave that can reach up to 3 times the amplitude of 

the initial carrier wave (that is, the wave energy is 
basically concentrated in a single wave number). Our 
paper presents the application of Zakharov equation in 
three dimensions (to deep water gravity waves, which is 
an important tool for acquiring information on the 
scientifically conceivable reasons for the formation of 
rogue waves. In this regard, additional assumptions are 
implemented to make the transition from hydrodynamic 
Euler equations to Zakharov’s modulation instability. 
Considering only deep rivers (H tends to infinity), we try 
to avoid interactions between the bottom and the surface 
of the rivers (where the waves are located): stories 
describing the rogue waves, do not mention the 
appearance of ocean volcanoes. The same precautions 
recommended considering only very large rivers. This 
prevents interference between the primary waves and 
those produced by their reflection on the shores. The 
results presented are new, clear and neat. But they only 
consider the energy point of view: this means that only 
amplitude modulations are processed. We are currently 
working on phase modulations, to try to understand more 
about rogue waves. 



 
 
 
 
Symbols 

 
Physical symbols 
 
b : Complex surface function 
Bi: Main component of the complex surface function (i = 
0,1,2,3) 
Bi: Smaller component of the complex surface function (i 
= 0,1,2,3) 
Bi: Smallest component of the complex surface function (i 
= 0,1,2,3) 
g: Acceleration due to gravity 

g


: Three – dimensional acceleration due to gravity 

H: Water depth 
ki: Wave number (i = 0,1,2,3) 

ik


: Wave number vector (i = 0,1,2,3) 

P: Pressure 
t: fast time scale 
t1: Slower time scale 
t2: Slowest time scale 
Vi: Interaction coefficient (i = 0,1,2,3) 
w: Vertical velocity of particle 
Wi: Interaction coefficient 

ki = i: Main component of the complex surface 
function (i = 0,1,2,3) 

 Measure of non-linearities (steepness)  

 Velocity potential 

Surface elevation 

t: Derivative of the surface elevation  with respect to 
time 

Stream function 

t: Derivative of the stream function  with respect to 
time 

ki = iAngular frequencies of interaction waves  
 
Mathematical symbols 
 

Dirac’s function 




: Three – dimensional gradient 




: Vertical component of the gradient 

*: complex conjugate 
 
Dispersion coefficients 
 
Cx, y= Group velocity components 

Group dispersion coefficients 

Non-linear coefficient 

Coupling coefficient 
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