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Introduction
Double diffusion convection occurs when :
» Two components with different diffusion coefficients
» Opposing effects on the vertical density gradient
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Navier-Stokes equations
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Note:  Neglect dissipation of heat due to viscosity
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Perturbation Equations
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We take the curl of the N-S equation (2) to obtain
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We introduce the stream function ¢, such that
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Equation (5) is then identically satisfied. Substituting (8a,b) and
(1) into (6), (3) and (4) yield 3 equations in 3 unknowns given by
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The dimensionless variables are introduce such that
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In terms of dimensionless quantities, equations (9)-(11) becomes
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where 7 = ,f—s < 1. The Prandtl number Pr, thermal Raleigh
number Ra and the salinity Raleigh number R; are defined as
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The dimensionless boundary conditions:
Zero normal velocity at the boundary z=0 and z = 1:
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- o, - _
vz(x,1,t) =0 = ﬁ(x, 1,t) = 0= ¢(x,1,t) = g(t).(19)

We will also implement the condition of zero shear at the boundary
Zz=0and Z=1 to get
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Perturbation analysis

The boundary conditions for Temperature and salt concentration

are ) B
T1(x,0,t) = S1(x,0,t) =0

0,
Ti(x,1,t) =0, Si(x,1,t) =0

We seek solutions for ¢, T; and S; satisfying the boundary
condition of the form:

U(x,z,t) = A,e’tsin(max)sin(rnz) (20)
Ti(x,z,t) = Bne?f cos(mwax)sin(mnz) (21)
S1(x,z,t) = C,e”t cos(max) sin(mnz) (22)



The dispersion relation
034+ Mo? + No+ Q =0,
where
M = k*(Prr + 1)
N = (Pr+ Prr+ 7+ 1)k* — %(azﬂzPr(Ra — Rs))
Q = Pr + 7k® + 2*>7°Pr(Rs — TRa).



Analysis of the dispersion relation roots

» Principle of exchange
stabilities when o is real and the marginal states are
characterized by 6, =0 and 0, = 0

1 27
R, = Ry + —x*
T 4

» Over stability
The marginal state are characterized by o, =0 and o; # 0
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» The bifurcation point
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The End



