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Introduction

Introduction

m There is a decrease in the consumption of traditional beers, as a result of
consumers seeking more adventurous tastes.

= Brewing companies are forced to propose more varieties of beers to suite various
markets.

m Beer varieties are uniquely blended to obtain different types of beer blends with
each satisfying different attributes at specific levels.
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Introduction

Introduction

m The problem comes from a North American based brewing company, which is well
established with concept of beer blending.

m The company is in the process of having more varieties of beers on the market,
they are considering a wider range of raw materials with wider range of attributes.

m Blending has become a complex task since they have to process large raw
material and attributes to produce quality beer blends at lowest cost.
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Introduction

Company Aim

Develop and solve a blending model that is able to :
m Determine the closest match of beer blends at the lowest cost.

m Allow the user to analyse the trade-off between the quality of the blends and the
cost of the raw materials.
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Problem Formulation

Problem Formulation

Specific criteria :
= Minimize total production cost per week.
m Adhere as closely as possible to qualitative characteristics of existing blends.
What is an optimal solution ?
m There may be an infinite number of solutions which may be said to be optimal.
m Each optima represents a trade-off (in this case cost vs quality).

= The client may have preferences or priorities that will guide or determine the
choice of the final solution.
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Problem Formulation
[ Jelele]e}
Given Data

Target Blend Characteristics

rBlend 1
b1

L bw

= Number of blends : N

= Number of attributes : P

m Variable indexing blends : j

m Variable indexing attributes : k

Blend N 1
byn

bun
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Problem Formulation
[e] le]e]e}
Given Data

Raw Material Characteristics

rRaw Materials Attribute1 ... ... Attribute Pq
RMA 1 e e np
R=
L RMM ' e p _

= Number of raw materials : M
= Number of attributes : P
m Variable indexing raw materials :
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Problem Formulation
[e]e] le]e}
Given Data

Supply, Demand and Cost Constraints

dy S1 Cq
d - S = Cc=
dN Sm Cm
TABLE — Supply for each raw ma- TABLE — Cost of each raw mate-

TABLE — Demand for each blend j terial i rial i per kg/week
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Problem Formulation
[e]e]e] o}
Given Data

Variables : Blend Recipes

rBlend1 ... ... ... BlendNj
X11 XN
X =
L Xwm1 XN 4

m where x; is the amount in kilograms of raw materials i in blend j
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Problem Formulation
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Given Data

Choice of models

We explore two approaches to optimizing over multiple objectives :
= Bounded-e.
= Weighted sum.
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Bounded-e

Problem Formulation
®0000

Bounded-e

m Objective function :

Optimize over a single objective : Total cost (C).
Allow the other objectives to vary within an acceptable range and add to list of
constraints below.

m Constraints :

Limited supply of materials
Minimum demand from distributors.
Accuracy of blend (constrained €).

m Assumptions :

Each blend characteristic is of equal importance.
Difference in quality can be tasted when ¢ > 1.0.
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Problem Formulation
O®000
Bounded-e

Bounded-e

m Objective function :

Ms

N
C= Z CiXjj

j=1 i=1
= Subject to :
N
> xj < s;,¥i € [1, M] - Supply of materials
=
M

> " xj > d,Vj € [1,N] - Demand of blend
i=1
Sy M

ZM = by, Vj € [1,N],Vk € [1, P] - Accuracy of blend
i=1 Xij
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Problem Formulation

Bounded-e

Bounded-e

[e]e] lele}

m Objective function :

= Subject to :

N M
C= Z CiXjj
=

i=1

N

> " xj < s;,Vi € [1, M] - Supply of materials

=1

M

Zx,-j > d;,Vj € [1, N] - Demand of blend

i=1

Z/ 1 Tk Xi 2ai=1"ik2ij
bjkfejk< ™ <bjk+ejk,Vj€[1 N],Vk € [1,P]
j

- Accuracy of blend ,ej € [0, 1]
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Problem Formulation
00000
Bounded-e

Bounded-e

m Objective function :

CiXjj

Mz

03!

j=

= Subject to :

N
> " xj < s;,Vi € [1, M] - Supply of materials
=1
M
> " xj > d;,Vj € [1,N] - Demand of blend
i=1
Tk Xii
L iy > b — €jk, Vi € [1,N],Vk € [1,P] , e € [0, 1]

x|

Z/ 2ui=1 likXjj <

] by + e, Vj € [1,N],Vk € [1,P] ,ei € [0,1]
)
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Problem Formulation
[e]e]e]e] }

Bounded-e

Bounded-e

m Objective function :

CZZZC{X,‘/

j=1 i=1
= Subject to :
N
> " xj < s;,Vi € [1, M] - Supply of materials
j=1
M
> " xj > d;,Vj € [1,N] - Demand of blend
i=1
M
> (rik — bk + €)xj > 0,%j € [1,N],Vk € [1,P] , e € [0,1]
i=1

M
> (i — bk — €)X < 0,¥j € [1,N], ¥k € [1,P] , i € [0,1]
i=
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Problem Formulation
@000
Weighted Sum

Weighted Sum

m Objective function :
Consider multiple objectives simultaneously.
Introduce an additional set of auxiliary variables that represent closeness to desired
qualitative characteristics
Apply a weighted sum to all the objectives to obtain a single metric
Optimize over this summary descriptor

= Constraints :

Limited supply of materials

Minimum demand from distributors

Auxiliary variables constrained by target blend characteristics
m Assumptions :

Each blend characteristic is of equal importance
Difference in quality can be tasted when e > 1.0
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Problem Formulation
0@00
Weighted Sum

Weighted Sum

m Objective function :

N M
cr(x)=mind > " cixj

=1 =1
Ca(Xx) = minyy,Vj € [1,N],Vk € [1, P]
= Subjectto :
N
> " xj < s;,¥i € [1, M] - Supply of materials
=1
M

> " xj > d;,Vj € [1,N] - Demand of blend
i=1

M
Yie = 1> (i — b)xl, vj € [1,N], vk € [1, P]
i=1
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Problem Formulation
[e]e] o)
Weighted Sum

Weighted Sum

m Objective function :

C = M6y (X) + A2Ca(x), where > "X =1

i
= Subject to :

Z xj < s;,Vi € [1, M] - Supply of materials

Z xj > dj,Vj € [1,N] - Demand of blend
i=1

M
Z fic — by )Xy, Vi € [1,N],Vk € [1, P]
M

Yik < =D (i — b)xy, V) € [1,N], Vk € [1, P]
i=1
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Problem Formulation
[e]e]e] )
Weighted Sum

Weighted Sum

Two important questions :
= How did we set the weights \; ?

m We viewed the weights as a trade-off between cost and quality.
m However, often the solution obtained does not reflect the preferences expressed in the
choice of weights.

m Should we scale c¢1(x) and ¢2(x) ?

m Objective functions may be measured in different units and may have different orders of
magnitude.

m In this case, yj is a proxy for blend characteristics and we hope yx <= 1.0, whereas
production cost = $1, 000, 000.

m However, yx may assume very large values (100, 000 — 1,000, 000) during numerical
solution, not directly representative of blend closeness to target characteristic.

® Some authors discourage scaling of objective functions when weights are used as
trade-offs (3=, \; = 1) and our empirical results confirm this.
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Numerical Results

Numerical Resulis

Run experiments for :
= Bounded-e :

m several runs where e € [0.3,1.0]
m No solutions found when e < 0.3

= Weighted sum :

m several runs where Ay € [0.1,0.9]
B =1.0— )
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Numerical Results

Results : Cost vs Quality

1000000 © Bounded epsilon
] ® Weighted sum
4
L]
980000
_ 960000
8
H
§ 940000 .
5 .
g .
H .
& 920000 .
3 .
2 .
= .
.
.
900000 .,
o
° .
L)
°e
®e
880000 ° e,
L
~ey o
°
005 010 015 020 025 030 035

Mean violation of target blend

FIGURE — Trade-off between cost and adherence to target characteristics
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Numerical Results

arison : Mean violations

Mean violation
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FIGURE — Distribution of mean violations of blend characteristics over all experiments
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Numerical Results

arison : Maximum violation

Max violation

Bounded Epsilon Weighted Sum

FIGURE — Distribution of maximum violation of blend characteristics over all experiments
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Numerical Results

Comparison : Total number of violations

Total violations.

=

Weighted Sum

‘Bounded Epsilon

FIGURE — Distribution of number of violations blend characteristics over all experiments (§ > 0.05)
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Numerical Results

Comparison : Typical Candidate Solutions

Bounded epsilon = 0.3 candidate solution

7 7 7 T T T
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Blend characteristics

FIGURE — Candidate solution displays several mild deviations from the target blend characteristics
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Numerical Results

Comparison : Typical Candidate Solutions

Weighted sum candidate solution

0 1 2 3 4 5
Blend characteristics

FIGURE — Candidate solution displays a few sharp deviations from the target blend characteristics with near
perfect match elsewhere
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Conclusion

Conclusion

m Solutions represent a trade-off between cost and quality, where the client’s
preferences will guide the final choice of model.

m When searching through a possibly infinite set of candidate solutions, different
approaches may yield solution sets with special characteristics.

m Different approaches may fill in parts of the solution space which would be
inaccessible if one follows only one method.

m Despite a large range of weight preferences, the weighted sum method favours
solutions that prioritize quality over cost.
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Further work

Further work

m For Bounded-e : introduce ej for expert to set individual preferences on blend
characteristics.

= For Weighted Sum : introduce wj weights for expert to set individual weights on
Yik:

m These more general weights will also allow for Monte Carlo Search in the solution
space.

m Explore further approaches like Genetic Algorithm Search and other
Meta-heuristic techniques.
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