
Outline Introduction Literature Implemetation Multiple Strings Binary Structure Summary

Mobile device detection based on user agent
strings

Problem presented at South African MISG 2011
brought by Zyelabs

Industry: Rumbidzai Mukungunugwa, Ismail Dhorat

Participants: Colin Please, Ludovic Tangpi, Asha Tailor, Dario Fanucchi, Byron Jacobs, Shaun Kimmelman,

Graeme Hocking

January 14, 2011

Outline Introduction Literature Implemetation Multiple Strings Binary Structure Summary

Overview

1 Introduction

2 Literature

3 Implemetation

4 Multiple Strings

5 Binary Structure

6 Summary

Outline Introduction Literature Implemetation Multiple Strings Binary Structure Summary

The Goal

A “user agent” string is sent from device to a server to
identify itself and its characteristics, i.e. device type, screen
size, e.g.
Mozilla/5.0 (iPod; U; CPU iPhone OS 3 1 1 like Mac OS X; en-us) AppleWebKit/528.18 (KHTML, like

Gecko) Mobile/7C145

BlackBerry7100i/4.1.0 Profile/MIDP-2.0 Configuration/CLDC-1.1 VendorID/103

“User Agent Strings are not standardized

The string is compared to a list on WURFL (Wireless Universal
Resource File) database to get the best possible match.

Outline Introduction Literature Implemetation Multiple Strings Binary Structure Summary

The problem

Database has (currently) 13,000 entries and growing

Strings are in no particular format, length or order

Often there is no perfect match - user agent strings may be in
a different order, use different abbreviations, wrong, etc. ...

Currently, Levenshtein algorithm is used to match strings and
the whole database is searched.

MISG: Wish to get the best (or satisfactory) match in
shortest time

M o z z i

M o z i l l a 3

l

Outline Introduction Literature Implemetation Multiple Strings Binary Structure Summary

The group considered;

string matching algorithm - literature search

implementation of existing method (for comparison)

“quick” improvements

subdivision of database

improved database storage algorithms

future possibilities

Outline Introduction Literature Implemetation Multiple Strings Binary Structure Summary

Exact String Matching

Involves alignment and matching

Brute Force
Easy to implement. Worst case O(m × n)

KMP (Knuth-Morris-Pratt)
Good scaling, bad hidden constant

Boyer-Moore Algorithm
Industry Standard text searching algorithm

Outline Introduction Literature Implemetation Multiple Strings Binary Structure Summary

Inexact String Matching

Try to find the best fit for two strings

Hamming Distance
Number of positions at which aligned symbols are different

Edit Distance (Levenshtein)
Smallest number of edits from S to T

Longest Common Subsequence
Longest subsequence in both strings. Eg. diff in Unix

Longest Common Substring
Longest common substring between the two strings

Fast Dynamic Programming Methods for each of these exists

Outline Introduction Literature Implemetation Multiple Strings Binary Structure Summary

Existing Brute force method

Brute force: Make a full search, and compare everything, e.g. in
python,

for i in xrange(len(database)):

a = lev2(database[i], user)

if a <= b:

b = a

j = i

return database[j]

Running time: 0.316.

Outline Introduction Literature Implemetation Multiple Strings Binary Structure Summary

First improvements

Fix a threshold and stop when happy with the distance.

Running time in the “worst” case: 0.419.
Running time in the “best” case: 0.128

Subdivide the database per order of priorities.
e.g. S = [’Nokia’, ’Samsung’, ’Ludovic’,’Acer’]
(only search the relevant category)

Running time in the “worst” case: 0.286.
Running time in the “best” case: 0.074.

Order the database in frequency of request over last week, e.g.
stop when happy with distance. (Not able to implement
without data)

Outline Introduction Literature Implemetation Multiple Strings Binary Structure Summary

Matching to a database of strings

Outline Introduction Literature Implemetation Multiple Strings Binary Structure Summary

Repeated String Matches / ”Brute Force”

Outline Introduction Literature Implemetation Multiple Strings Binary Structure Summary

Repeated String Matches / ”Brute Force”

Outline Introduction Literature Implemetation Multiple Strings Binary Structure Summary

Repeated String Matches / ”Brute Force”

Outline Introduction Literature Implemetation Multiple Strings Binary Structure Summary

Repeated String Matches / ”Brute Force”

Outline Introduction Literature Implemetation Multiple Strings Binary Structure Summary

Repeated String Matches / ”Brute Force”

Outline Introduction Literature Implemetation Multiple Strings Binary Structure Summary

Improvements in the Literature

Repeated Matching is O (k × C (n, m)), where C (m, n) is the
cost of a string-matching algorithm

We can do MUCH better!

Aho-Corsaik Algorithm for EXACT phrase matching

Based on the KMP algorithm
Achieves O(C (m, n) + k). This is very good: k ≈ 14000 and
m, n ≈ 200
But EXACT matching leads to high error rate!

Suffix Trees for phrase matching

Pre-processing to construct a suffix tree of the database
O(m) search times!
space concerns and exactness concerns

Outline Introduction Literature Implemetation Multiple Strings Binary Structure Summary

Suffix Tree Example

Outline Introduction Literature Implemetation Multiple Strings Binary Structure Summary

Suffix Tree Example

Outline Introduction Literature Implemetation Multiple Strings Binary Structure Summary

Binary Strucutre

Inexact Search
We only need a substring to match

Time and Speed increase
The performance is increased over Brute Force.

Preprocessing
Our algorithm is general in that the tree is generated based on
the database.

Inexactness
This is characterized by irrelevant data; i.e. We never create
sub-group based on irrelevant data

Frequent User-Agent Strings

C [1] � C

[(
10

100

)
9

10
+

(
90

100

)
1

10

]
≈ C · 18%

Outline Introduction Literature Implemetation Multiple Strings Binary Structure Summary

Binary Structure: Visual Aid

Outline Introduction Literature Implemetation Multiple Strings Binary Structure Summary

Binary Structure: Visual Aid

Outline Introduction Literature Implemetation Multiple Strings Binary Structure Summary

Table of Results

Algorithm Time Range Comment

Basic Brute Force 0.316− 0.419 No Pre-processing

Threshold 0.128− 0.419 No Pre-processing

Subdivision (simple, threshold) 0.074− 0.286 Pre-Process

Caching − extra coding

Order by Popularity − unable - promising

Suffix Trees − Huge potential

Outline Introduction Literature Implemetation Multiple Strings Binary Structure Summary

Final Remarks

Have understood and programmed the algorithm

Thorough literature search of string matching & search
algorithms

Implemented one or two schemes (relatively simple) that have
given good improvement

Identified methods that will give substantial improvements
(e.g suffix trees in storage) and begun implementing them

Conclusion - a range of possible improvements have been
suggested, that may be used in combination or separately, all
of which will give significant improvements to the method,
some spectacular!

	Outline
	Introduction
	Literature
	Implemetation
	Multiple Strings
	Binary Structure
	Summary

