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One of the important steps in the manufacture of glass by the 
float process is the control of glass thickness by stretching the 
ribbon. The first step in a program to model the stretching of 
float glass is discussed. A simple, 1-dimensional analysis is 
presented for the mechanics of stretching a free ribbon, i.e. one 
without edge constraints in the stretching region. For the carw of 
a stiff ("cold") ribbon, the present analysis yields closed-form 
solutions which are generally valid but do not encompass all 
phenomena of interest. The stretching of a "hot" ribbon is, 
therefore, treated quantitatively by computer simulation. This 
approach is used to illustrate the differential attenuation of the 
width and thickness of hot ribbons. In another numerical 
example, the calculated width attenuation Is compared with 

the results of in-plant measurements. 

I. Introduction 

HEN the invention of the float glass process was first an- W nounced, only glass ~ 0 . 2 7  in. thick could be made; even- 
tually 0.27-in. float glass was stretched to yield thinner glass. Since 
then, the float process has largely replaced the older plate glass 
process for manufacturing flat glass. Pilkington' has given an excel- 
lent account of how the process was developed, the different prob- 
lems encountered, and their solution through experimentation and 
analysis. 

The float glass process exploits the fact that molten glass poured 
on molten tin spreads out to a perfectly flat sheet. This glass sheet 
has an equilibrium thickness of ~ 0 . 2 7  in., determined by the 
surface tensions of glass, tin, and the glass-tin interface and by the 
densities of glass and tin (see Fig. 1). The surface tension forces that 
help form glass of equilibrium thickness also work against forming 
thinner glass. An analysis of the factors governing the equilibrium 
thickness showed that there is little scope for changing these factors 
to obtain a significant reduction in thickness. However, a substan- 
tial reduction in thickness can be obtained by the mechanical 
stretching of glass ribbon. The physical phenomena involved are 
discussed in the papers of Pilkingtod and Charnock.2 
To treat the subject quantitatively, the present paper proposes a 

1-dimensional model of stretching which describes the process in 
the simplest possible terms without losing sight of the essentials. 
Thus, it is a prelude to a 2-dimensional finite-element model of 
stretching which also accounts for 2-dimensional variations in tem- 
perature, velocity, thickness, and stress in the ribbon. 

II. Description of Ribbon Stretching 
A float glass ribbon can be stretched successfully when a certain 

viscosity regime, i.e. a longitudinal temperature distribution in the 
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Fig. 2. ( A )  Viscosity and ( E )  temperature regime for stretching float 
glass ribbon. 

tin bath, is followed. Figure 2(A), taken from Pilkington's paper,' 
shows the appropriate viscosities for 4 stages of theprocess. Figure 
2(B) indicates the corresponding temperature distribution. 

In the first stage of the process, molten glass is poured onto 
molten tin and allowed to spread out to its equilibrium thickness. 
The temperature in this region, = 195O0F, is high enough to allow 
any surface irregularities to even out by flow (viscosity= 104 P) and 
to ensure uniform thickness. Second, the glass is cooled to 1300°F 
( = 108 P) and the ribbon edges are gripped by pairs of edge rollers. 
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The speed of the rollers determines the local speed and width of the 
ribbon. These rollers also counteract the longitudinal tractive force 
applied to stretch the ribbon and thus prevent the transmission of 
this large force to the low-viscosity glass upstream. In the third 
stage, the ribbon is reheated to = 1550°F. The corresponding vis- 
cosity of = l o 6  P is low enough to allow stretching without the 
generation of excessive stresses, and yet high enough to prevent 
surface tension forces from driving the thickness back to its equilib- 
rium value. Finally, in the fourth stage, the ribbon is cooled to 
1100°F (= 10" P). Now the ribbon is hard and stiff enough to be 
removed mechanically from the tin bath without surface damage. 
The temperature distribution shown in Fig. 2(B) represents an ideal 
situation. Large departures from the suggested temperatures can 
bring about an altogether different balance of forces that, in turn, 
can lead to failure of the stretching process. 

111. Analysis of Ribbon Stretching 

The present analyses idealize ribbon stretching as a largely 
1-dimensional flow in the presence of a 1-dimensional (longitudi- 
nal) temperature distribution. The assumptions of this idealization 
are described by: 

u x = u x ( x ) ,  u u = m y ( x ) ,  uz=o ( l a )  

u x  = u x ( x )  9 (1b)  B = [f(x )lY, u * = [g (x  11 z 
w= W ( X ) ,  H = H ( x )  
T= T ( x )  

In Eq. ( l ) ,  u represents stress components, u velocity components, 
W and H the width and thickness of the ribbon, and T the ribbon 
temperature. The simplifications just given result from the low 
ratios of the ribbon width and thickness to its length. In a 
2-dimensional analysis, all of the variables except Ware allowed to 
vary along both the axial ( x )  and transverse ( y )  directions. Compu- 
ter runs based on the 2-dimensional model have confirmed the 
validity of the assumptions in Eqs. ( l a ) ,  (lb), and (lc) for ribbons 
with a 1-dimensional temperature distribution. 

( I )  Stifl-Ribbon Analysis 
At the stretching temperature ( = 155OoF), the ribbon is stiff and 

viscous forces are dominant. Forces such as surface tension, inertia, 
and hydrostatic pressure are negligible. The drag of the molten tin 
on the moving ribbon may be important, depending on the nature of 
convection currents in the tin. However, this effect is ignored in the 
present 1-dimensional model, which aims to predict only the gross 
dimensions of the ribbon. In addition, when there are no edge rollers 
in the stretching region ("free ribbon"), the transverse stress (uI) 
is zero. Under these conditions, the axial tractive force does not 
vary along the length of the ribbon, i.e. 

(2) F = W H u ,  = constant 

The axial stress and velocity gradient are related by: 

(3) 

where 7 is the viscosity of glass. At steady state, the mass flow at 
any cross section is a constant. Therefore, 

p WHu = m = constant (4) 

Eliminating W and H in Eqs. (3) and (4) gives 

FPU -- - 3' dj 
m dx 

The solution of differential Eq. (5) is 

or 

u(x)=u,  exp [S (x ) ]  

In Eq. (6)  and the following, subscript 1 stands for the initial value 
at the edge rolls and subscript n for the final (downstream) value. 
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Fig. 3. Solutions of stiff-ribbon analysis. 

Equation (6) leads to the following definitions of a nondimcnsional 
local stretch number, S ( x )  and local effective viscosity, '(x): 

(7) ~ ( x )  = (x /xn)  ( { n / { )  In ( t i n  /ri 1 )  

From the mass-conservation equation, it follows that W H u =  
W I H l u l  or ( W / W l ) ( H / H l ) = u l / u .  Since glass is isotropic and 
uU = 0 (because surface tension is neglected), the width and thick- 
ness of the ribbon are attenuated in the same proportion. Thus, 
( W /  Wl ) ( H  /Hl ) = ( W /  WI )' = ( H/H1)'  = ril /u or 

W ( x ) =  W ,  exp [ - ?4S(x)] (9a 1 
H ( x ) = H l  exp [ - M S ( x ) ]  (9b)  

The axial stress is derived from Eqs. (3) and (6) .  
- 

ux=3v- =3u ( E) In - u n  

dx u1 

or 

Equations (6) ,  (9) ,  and (10) completely describe the stretching 
process and are used to calculate velocity, width (or thickness), and 
stress at any cross section along the length of the ribbon. These 
equations clearly indicate that the plots of log C h i l ,  log W l / W ,  
log H ,  / H ,  and log u,/uxl are all linear functions of the nondimen- 
sional number S as shown in Fig. 3. The S number describes what 
fraction of the total stretching has occurred up to a given point; S 
may, therefore, also be regarded as a dimensionless measure of 
position along the float bath: It increases from zero at the upstream 
end ( x = O )  to a maximum of log un/ul  at the downstream end 
( x = x , = L ) .  Thus, arelation betweensmas and the stretch ratio, R ,  
is obtained from Eq. (7): 

R=rinlul=exp [S,,] (11) 

The importance of the concepts of effective viscosity 17 and 
stretch number S is that they permit simple and universal solutions 
for the entire family of stiff-ribbon problems. These solutions (Eqs. 
(6) ,  (9), and (10)) are independent of mass flow, stretch ratio, 
temperature distribution, etc. for any given design of the ribbon 
stretching operation. 

(2) Comprehensive I-Dimensional Analysis 
The stiff-ribbon analysis neglects the surface tension forces and, 

hence, fails to predict differential attenuation in a hot ribbon. A 
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more comprehensive, yet I-dimensional analysis of stretching that 
accounts for all forces acting on the ribbon (viscous, surface ten- 
sion, inertia, and hydrostatic pressure) is free of this limitation. The 
exact (comprehensive) analysis was also used to validate the results 
of the approximate (stiff-ribbon) analysis. Furthermore, the experi- 
ence gained in the numerical solution of the exact equations of 
1-dimensional flow proved useful in the numerical solution of the 
more complex 2-dimensional flow problem. 

In the comprehensive analysis, the steady-state shape of the 
stretched ribbon is not known in advance. It may be calculated by 
making an initial guess of the shape and performing a series of 
iterations until convergence is obtained. Alternatively, one can start 
with a known solution and calculate transients leading to the desired 
solution: The latter approach, although time-consuming, is sure- 
footed. Therefore, the computer simulation starts with a rectangular 
ribbon of constant width (W,)  and thickness (HI = H , , ) ,  moving 
with uniform axial velocity ( l i , ) .  The downstream velocity is then 
increased to li,, and a transient solution is calculated every At(  2- 5) 
s .  A steady state is reached when the ribbon shape remains un- 
changed for 2 consecutive time steps. 

The axial momentum balance at any cross section of the ribbon is 
written in Eulerian framework as follows: 

where D / D t = d / a t  +li(d/ax) is the total derivative. The4 terms of 
Eq. (12) represent contributions from axial traction (viscous), sur- 
face tension, hydrostatic pressure, and inertia. The velocity gradi- 
ent is related to stress components by 

1 F 0 . 5 ~ ~  - -(u,-OSu ) -  - 3 p m - 7  -- 
ax 37 

In Eq. (13), Poisson's ratio is taken to be 0.5, since glass is prac- 
tically incompressible. 

The transverse stress ufl is the result of surface tensions and hy- 
drostatic pressures acting at the edge of the ribbon; uy = 0 wherever 
H = He,,. The exact expression for this stress component (see Ref. 
3) is 

When H > H,,  , u, is tensile and the ribbon tends to expand; 
when H < H,, , u, is compressive and the ribbon tends to contract. 
Accordingly, W varies with time. This variation is governed by 

Similarly, the variation in thickness is given by 

In Eq. (15), the first term on the right side represents actual defor- 
mation of the material and the second term reflects dimensional 
changes resulting from the axial movement of the ribbon. At steady 
state, these 2 effects cancel out and an unchanging ribbon shape 
results. 

Equations (12), (13), and (15), which represent momentum bal- 
ance, constitutive relation, and mass balance, respectively, are 
generalizations of Eqs. (2), (3), and (4) of the stiff-ribbon analysis. 
Unlike the latter, the equations of the comprehensive analysis are 
too complex to admit closed-form solutions and were solved numer- 
ically. Details of the numerical formulation will not be given here, 
except to mention that the numerical method of solution is stable 
only when the calculation proceeds in the downstream direction. 

IV. Results 

Before discussing results as such, it is useful to illustrate the 
operation of the present computer simulation of the drawing of a 
float-glass ribbon. Figure 4 shows a sequence of transient ribbon 
configurations obtained during the generation of a steady-state 
solution for the ribbon pulled at 1550°F (see Fig. 5 ) .  The simulation 
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Fig. 4. Transient ribbon shapes. 
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Fig. 5. 
ribbons. 

Steady-state solutions for "hot" (1950°F) and "cold" (1550°F) 

starts with a known solution, i.e. a ribbon of equilibrium thickness 
with constant width and axial velocity along its entire length. At 
t = 0, the downstream velocity is increased to 4 times its initial 
value, causing a greater mass flow at the downstream end than at the 
upstream end. As a result of this imbalance, a neck develops in the 
middle of the ribbon (see Fig. 4(B)). The neck travels downstream 
and finally a ribbon with monotonically decreasing width is ob- 
tained; this steady-state shape results after 855 s of simulated 
pulling. At this time, the mass flow across any cross section of the 
ribbon is constant to within 0.1%. The steady-state shape indicates 
that 190% of the stretching occurs in the first 50 feet in which the 
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temperature is held constant at 1550°F. Very little stretching occurs 
as the ribbon is pulled 50 feet farther and cooled linearly to 1050°F. 
All further results will refer to ribbons in the steady state of stretch- 
ing. 

Four numerical examples are presented in the following sections. 
The first 2 are chosen to contrast the stretching characteristics of 
“cold” and “hot” glass ribbons. The third examines differential 
attenuation of glass ribbon as a function of its temperature. The 
fourth compares the calculated width attenuation with mea- 
surements obtained from a typical plant run. 

( I )  Comparison of Stretching “Cold” and “Hot” Ribbons 
For the examples given in this section, the following operating 

conditions are assumed: mass flow, rri = 500 tondday; upstream 
width, W1=240 in.; upstream thickness, Hl=0.268 in.; and 
stretch ratio, u,1/u1=4. The ribbon is assumed to be held at a 
constant high temperature for the first 50 feet of stretching, and it is 
cooled linearly in the next 50 feet to freeze in its shape. Thus, the 
ribbon is stretched at essentially constant temperature. As Fig. 5 
shows, 2 cases are considered: In one the glass is stretched at 
1550”F, in the other at 1950°F. Calculations are performed both by 
the simpler stiff-ribbon analysis and the comprehensive analysis. 
Meaningful calculations for the hot ribbon require use of the com- 
prehensive analysis. The results are given in Fig. 5, which shows 
the local velocity, width, and thickness (all plotted in a nondimen- 
sional form) as functions of the local stretch number, S(x). An x 
scale denoting physical distance from the edge rollers is marked 
along each curve. Note, at the downstream end, the crowding of this 
scale, which reflects the freezing in of the ribbon shape. Finally, 
Fig. 6 shows the axial stress as a function ofx. In these graphs, solid 
lines represent results of the stiff-ribbon analysis, and plotted points 
the results obtained by the comprehensive analysis. 

The cold ribbon example uses a stretching temperature of 
1550°F, as suggested in Ref. 1. As shown by Figs. 5 and 6, the same 
steady-state distributions of axial velocity, width, thickness, and 
axial stress are obtained by both the stiff-ribbon and the comprehen- 
sive analyses. This agreement shows that, for the stretching of 
sufficiently cold ribbons, the simpler stiff-ribbon analysis yields 
very good results. 

In a hot ribbon, surface irregularities are rapidly removed by 
viscous flow. Thus it might appear desirable to stretch glass at high 
temperatures. However, any attempt to stretch a really hot ribbon 
produces large differential attenuation, i .e. very little attenuation in 
thickness and unacceptably high attenuation in width. The second 
of the present examples, in which a glass ribbon is stretched at 
1950”F, is chosen to illustrate differential attenuation at its worst. 

The open circles in Figs. 5 and 6 represent the steady-state 
solutions for the stretching of a hot ribbon as obtained by the 
comprehensive analysis. These results, unlike those for the cold 
ribbon (solid circles), differ greatly from the results of the stiff- 
ribbon analysis (solid lines). The differences are the result of sur- 
face tension, inertia, and hydrostatic forces that are included in the 
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Fig. 7. Ribbon attenuation at different temperature and stretch ratios. 

comprehensive analysis. The influence of surface tension on the 
differential attenuation of width and thickness is especially marked 
at high temperatures, as is shown in the 2 lower plots in Fig. 5. 
Thus, in response to a 4-fold increase in axial velocity, the thickness 
attenuation is practically negligible (H1 /H, = 1.13); almost all at- 
tenuation occurs in width ( Wl/ W ,  = 3.53). Thus, the hot-ribbon 
example illustrates the kind of problem Pilkington faced in the early 
stages of developing the float process for thin (<0.268 in.) glass. 

(2) Differential Attenuation and Ribbon Temperature 
The examples just given demonstrate that differential attenuation 

is negligible at 1550°F and quite unacceptably large at 1950°F. This 
problem is addressed more generally in Fig. 7, a plot of width and 
thickness attenuation as functions of stretching temperature and 
stretch ratio, &hil. Figure 7 illustrates the results of a computer 
simulation of the stretching process and uses the dimensionless 
parameters W , / W ,  and H , / H , ;  thus this figure also generalizes 
Fig, 16 of Pilkington’s paper that was drawn in terms of the physical 
variables W, andH, andbasedondatafromplanttrials. Itisevident 
from Fig. 7 that the best temperature for stretching glass ribbon is 
1550°F; higher temperatures produce large differential attenuation 
and lower temperatures induce larger stresses in glass ribbon than 
are necessary for stretching. The ribbon temperature for stretching 
may therefore be specified as 1550°F with a tolerance of 250°F. 

(3) Comparison of Model Results and Plant Data 
A comparison of the calculated predictions of process parameters 

with representative data from an actual float glass plant operating 
with a single pair of edge rollers is illustrated in part by Fig. 8 for the 
following operating conditions: mass flow, ni = 300 tons/day; rib- 
bon width near edge rollers, W1 = 225 in. (upstream width); edge- 
roller speed, u l  =71.1 in./min (upstream velocity); and lehr speed, 
i,=400 in./min (downstream velocity). The axial temperature 
variation along the length of the ribbon is shown in Fig. 8 ( A ) .  The 
fact that the ribbon edges are somewhat colder than the center is 
ignored by the present 1-dimensional model used to simulate the 
plant run. Stiff-ribbon analysis is used because the ribbon is rela- 
tively cold (maximum axial temperature in the stretching re- 
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Table I. Calculated and Measured Dimensions of 
Downstream Ribbon 

Data source Width (in.) Thickness (in.) 
I- 

0 20 40 60 80 
Dislonce From Edge Rollers, %[ f l ]  

(A) 

Experimental 

Calculotod- Stiff-Ribbon Yodel Using 
Yeosured Temperature Distribution 

Fig. 8. Ribbon width as a function of position in tin bath. 

gion= 1605°F). Fig. 8 ( 8 )  shows the predicted (dotted lines) and 
measured shapes of the ribbon; there is good agreement between the 
two. Calculated and measured downstream width and thickness are 
compared in. Table I. The width attenuation in the first 40 feet could 
be predicted more accurately by estimating the influence of the 
lateral pull exerted by the edge rollers. 

V. Conclusions 

The stretching of float glass is largely governed by the viscosity 
of the ribbon in the stretching region. Differential attenuation of 

Plant data 91 
Stiff-ribbon analysis 95 

0.127 
.122 

Comprehensive analysis 93 ,125 

width and thickness can be avoided if the ribbon viscosity is = lo6 P 
(T=155OoF). For such stiff ribbons, simple solutions for flow 
variables are obtained in terms of a nondimensional stretch number 
S. The solutions cover the entire class of stiff-ribbon problems. In 
nondimensional form, they are independent of operating conditions 
such as mass flow, stretch ratio, and temperature variations along 
the ribbon. 

Differential attenuation is predicted in stretching a hot ribbon, in 
agreement with Pilkington’s observation. It is further shown that a 
ribbon could be as hot as 1600°F without showing appreciable 
differential attenuation. 

Calculated width attenuation (based on stiff-ribbon analysis) is in 
good agreement with in-plant measurements. This good agreement 
also indicates that the final width and thickness are not very sensi- 
tive to the moderate temperature variations that existed across the 
width of the ribbon. 

Acknowledgments: R. Gardon is thanked for valuable discussions and J. 
Sowman and E. Augustin for furnishing plant data on stretching. 
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Kernel Migration for HTGR Fuels from the System 
Th-U-Pu-C-0-N 

T. B. LINDEMER* and R. L. PEARSOW 
Chemical Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 

Nuclear fuels for the high-temperature gas-cooled reactor I. Introduction 
(HTGR) consist of spherical kernels of actinide compounds 
contained in gastight pyrolytic carbon and Sic. The fuel kernels 
migrate up the temperature gradient and into the coating 
layers. A theoretical analysis of in-reactor migration data indi- 
cates that a solid-state diffusion process controls the migration 
rate in fissioned Th0.84Uo.16C2, UO,, Tho,, PUO,-~,  and 
T~,8Uo.sOz particles. The theoretically based kernel migration 
coefficient (KMC) measured in units ( cds )  OK2 (“K/cm)-’, is 
thus used to correlate the laboratory and in-reactor data. The 
KMC values for Pu-containing particles may be dependent on 
the initial and in-reactor O/Pu values. The other in-reactor 
KMC values were apparently not dependent on the extent of 
fission, the fission of either 233U or 235U, or the presence of an 
Sic coating layer. Laboratory KMC values were obtained for 
unirradiated ThoZ, U01.65No.25, UCZ, ThCZ, and Th0.84U0.16C2 
particles and generally appeared to be consistent with in- 

reactor data. 

UEL elements for high-temperature gas-cooled reactors F (HTGR’s) are made from rigid assemblies (fuel rods or com- 
pacts) of coated fuel particles distributed appropriately in graphite 
holders that contain coolant passages and constitute both moderator 
and core The coated fuel particles are small spherical 
oxide or carbide kernels that are each coated with successive layers 
of pyrolytic carbon (BISO particles) and sometimes an intermediate 
layer of S i c  (TRISO particles). The pyrolytic carbon layers absorb 
damaging fission fragments and retain gaseous fission products and 
their precursors, whereas the S i c  layer improves the retention of 
metallic fission products and fuels.4p5 These fuels are currently 

Received February 28, 1976; revised copy received August 9, 1976. 
Based in part on presentations to the Nuclear Division of the American Ceramic 

Society, Paper Nos. 20-N-72. 13a-N-73, 62-N-74, 49-N-74, 5-N-75, and 
43-N-75. 

Supported by the U.S. Energy Research and Development Administration under 
contract with Union Carbide Corporation. 

*Member, the American Ceramic Society. 


