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Abstract: The effect of a road block on traffic flow is investigated

using the model in which the traffic velocity is a linear function of

the traffic density. The road consists of two lanes in one direction

and one lane is closed for a short distance by a road block. The

length of the tailback at the entrance to the road block, the time

spent in the road block and the traffic flux at the exit to the

road block are calculated. The maximum length of the tailback

is a linear function of the time T
∗ that the road block was in

place. The effect of the road block on the traffic depends on three

parameters, the density of the oncoming traffic, the time T
∗ and

the ratio λ of the speed limit in the road block to the speed limit

on the open road. The congestion caused by the road block can

be managed by adjusting T
∗ and λ.
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1 Introduction

In the fight against crime, the police frequently use road blocks to stop and
search cars. A road block usually has two stages; first the traffic is diverted
into a single stream and then a fraction of the passing cars are waved down
and searched. The modelling of a road block was brought to the Sixth South
African Study Group with Industry in 2009 by the Gauteng Department of
Community Safety who wanted to know how a search strategy would impact
on traffic flow. In this paper we address the first stage of the road block by
modelling the effect on traffic flow of the reduction of a two lane road to a
single lane with a given speed restriction.

A continuum model for traffic flow ([1] to [5]) is used which assumes that
the traffic is travelling steadily along a long road with no side turnings before
the road block is set up. A linear relationship between the traffic density and
the traffic speed is assumed. If the traffic flow is sufficiently heavy a shock wave
will form at the entrance to the road block and it will propagate backwards
through the oncoming traffic. When operating the road block it is important
to know the length of the tailback and the reduction in the traffic flux due to
the road block. At the same time a shock wave forms at the exit to the road
block and propagates in the direction of the traffic flow. At time T ∗ the road
block is removed. We will investigate the evolution of the shock waves and the
time taken for the effects of the road block to clear.

The results may be generalised to a highway with n lanes reduced to m
lanes by a road block where m < n. An accident in which one or more lanes of
a highway are blocked is another example of a road block. When all the lanes
are blocked the effect is the same as that of a red traffic light [2].

An asterisk will be used to distinguish dimensional variables. Variables
without an asterisk are dimensionless.

2 Road block in traffic flow

At t = 0 a road block, 0 ≤ x ≤ L, is introduced in the traffic flow reducing
the two lanes of traffic to one lane. The traffic flux in the open road and in
the road block are

qL = ρL(1− ρL) , qR = λρR(1− 2ρR) . (3.1)
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Graphs of qL and qR plotted against ρ are presented in Figure 1. The maximum
traffic flux in the open road is qLmax = 1/4 and occurs for ρL = 1/2 while the
maximum traffic flux in the road block is qRmax = λ/8 and occurs for ρR = 1/4.
When ρR = 1/4, the velocity of the traffic in the road block is λ/2 which in
dimensional variables is one half the speed limit. Since the maximum traffic
flux in the road block is λ/8 a shock wave will form at the entrance to the road
block when the traffic flux in the open road is in the range λ/8 < qL ≤ 1/4.
When qL = λ/8, the density ρL satisfies the quadratic equation
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Figure 1: The traffic flux in the open road, qL, and in the road
block, qR, plotted against the traffic density ρ for λ = 1/2.
The traffic densities ρA and ρB are defined by (3.3) and (3.4).
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3 Mathematical model

Consider an open road, −∞ < x∗ < ∞, consisting of two lanes in one di-
rection with no off-ramps or on-ramps. The flow of traffic is in the positive
x∗-direction. It is reduced to one lane at a road block, 0 < x∗ < L∗.

The traffic density ρ∗(x∗, t∗) is the number of vehicles per unit length of
the road. The velocity of a vehicle is denoted by v∗(x∗, t∗). The traffic flux
q∗(x∗, t∗) is the number of vehicles passing position x∗ per unit time. Denote
by ρ∗L, V

∗

L and q∗L the traffic density, velocity and flux in the open road to the
left of the shock wave and by ρ∗R, V

∗

R and q∗R the corresponding quantities in
the road block. Then

q∗L = ρ∗LV
∗

L , q∗R = ρ∗RV
∗

R . (2.1)

The maximum traffic density occurs when the cars are bumper-to-bumper. Let
ρ∗Lmax and ρ∗Rmaxbe the maximum traffic density in the open road and in the
road block. Since the two lanes are reduced to one lane in the road block,

ρ∗Rmax =
1

2
ρ∗Lmax . (2.2)

The maximum velocity in the open road and in the road block are the speed
limits V ∗Lmax and V ∗Rmax where V

∗

Rmax ≤ V ∗Lmax. Let

λ =
V ∗Rmax

V ∗Lmax

≤ 1 . (2.3)

The lower limit λ = 0 could describe a red traffic light in which the traffic
is brought to a stop for an interval of time or a road block in which all the
cars are stopped and checked one-by-one before being allowed to proceed. The
upper limit λ = 1 could describe an accident in which one lane is blocked but
the traffic authorities have not had time to impose a new speed limit in the
remaining lane.

We will adopt the model in which the velocity of the vehicles depends only
on the traffic density and use the velocity-density law

V ∗L = V ∗Lmax

(

1− ρ∗L
ρ∗Lmax

)

, V ∗R = V ∗Rmax

(

1− ρ∗R
ρ∗Rmax

)

. (2.4)

We chose ρ∗Lmax as the characteristic traffic density, V
∗

Lmax as the characteristic
velocity and ρ∗Lmax V ∗Lmax as the characteristic flux of vehicles. The character-
istic quantities apply in the road block as well as in the open road. We define
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the dimensionless variables

ρL =
ρ∗L

ρ∗Lmax

, VL =
V ∗L

V ∗Lmax

, qL =
q∗L

ρ∗Lmax
V ∗Lmax

,

ρR =
ρ∗R

ρ∗Lmax

, VR =
V ∗R

V ∗Lmax

, qR =
q∗R

ρ∗Lmax
V ∗Lmax

.

(2.5)

Then from (2.4),

VL = 1− ρL , qL = ρL(1− ρL) ,

VR = λ(1− 2ρR) , qR = λρR(1− 2ρR) .
(2.6)

The road block is removed after a time T ∗. The characteristic time is chosen
to be T ∗ and the characteristic length is therefore T ∗V ∗Lmax. We define

t =
t∗

T ∗
, x =

x∗

T ∗V ∗Lmax

, L =
L∗

T ∗V ∗Lmax

. (2.7)

Unless otherwise stated, dimensionless variables will be used.

ρ2L − ρL +
λ

8
= 0 (3.2)

which has two roots,

ρA(λ) =
1

2

[

1−
(

1− λ

2

)1/2
]

=
λ

8
+ O(λ2) as λ→ 0 , (3.3)

ρB(λ) =
1

2

[

1 +

(

1− λ

2

)1/2
]

= 1− λ

8
+ O(λ2) as λ→ 0 , (3.4)

with the properties

ρA + ρB = 1 , ρAρB =
λ

8
. (3.5)

A shock will not form at the road block if 0 < ρL ≤ ρA and ρB ≤ ρL ≤ 1.
When ρA < ρL < ρB, a shock forms at the entrance to the road block and

propagates backwards into the oncoming traffic. It is assumed that the traffic
flow in the road block will be such as to allow the maximum possible flux in
the road block so that qR = 1/4. The density could either increase across
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the shock from ρL to ρB or decrease from ρL to ρA. It can be shown that if
the density decreases across the shock then the shock is unstable while if it
increases then the shock is stable [4]. Hence ρL increases to ρB and the traffic
flux at the entrance to the road block is continuous.

The velocity of the shock is determined from the Rankine-Hugoniot condi-
tion [3, 4]. Let q−, ρ−, V− be the flux, density and vehicle velocity on the left
side of the shock and q+, ρ+, V+ be the corresponding values on the right side
of the shock. By considering continuity of the flux of vehicles relative to the
shock it is found that the dimensionless shock velocity

U =
[q]

[ρ]
=

q+ − q−
ρ+ − ρ−

(3.6)

or
dS

dt
= U = 1− ρ− − ρ+ . (3.7)

where x = S(t) is the position of the shock.
For the shock which forms at the entrance to the road block x = SL(t),

ρ− = ρL, ρ+ = ρB and SL(0) = 0. We assume that ρL is constant. Then since
1− ρB = ρA,

SL(t) = −(ρL − ρA)t . (3.8)

Since ρL > ρA the shock propagates backwards into the oncoming traffic. In
dimensional units the length of the tailback at time t∗ after the shock was first
formed is

∣

∣

∣
S∗L(t

∗)
∣

∣

∣
= (ρL − ρA)t

∗V ∗Lmax . (3.9)

Consider now exit from the road block and the open road x > L. Because
of continuity of traffic flux at the exit point x = L the traffic flux in the open
road beyond the road block is λ/8. From Figure 1 the traffic density in the
road block, ρB = 1/4, could either decrease to ρA or increase to ρB in the open
road. Because the road changes from one lane to two lanes at x = L the traffic
density will clearly decrease to ρA. Now the density of the traffic which passed
through the position of the road block before it was in place is ρL. A shock
discontinuity, x = SR(t), therefore propagates in the open road x > L with
ρ− = ρA and ρ+ = ρL. The velocity of the shock from the Rankine-Hugonoit
condition (3.7) is

dSR

dt
= 1− ρA − ρL = ρB − ρL (3.10)
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Figure 2: Ratio F (ρL, λ) of the traffic flux out of the road
block to the traffic flux into the left shock plotted against the
traffic density on the open road ρL for ρA ≤ ρL ≤ ρB and for
a range of values of λ.

and since SR(0) = L,
SR(t) = L+ (ρB − ρL)t . (3.11)

Since ρB > ρL the shock propagates in the positive x-direction. We see from
Figure 1 that there is a decrease in the traffic flux from qL to λ/8 due to the
road block. Thus

F (ρL, λ) =
traffic flux out of road block

traffic flux into left shock
=

λ

8ρL(1− ρL)
, (3.12)

where ρA ≤ ρL ≤ ρB. Since λ/8 ≤ qL ≤ 1/4,

λ

2
≤ F (ρL, λ) ≤ 1 . (3.13)
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The minimum value of F (ρL, λ) occurs for ρL = 1/2 and the maximum value
when ρL = ρA and ρL = ρB. Graphs of F (ρL, λ) against ρL for ρA ≤ ρL ≤ ρB
and for a range of values of λ are plotted in Figure 2. Clearly the traffic flux
is most adversely affected by the road block when the flux on the open road is
close to the maximum value which is attained for ρL = 1/2. The adverse effect
on the flux can be reduced by increasing the speed limit in the road block and
therefore increasing λ.

The traffic density profile after the road block has been in place for time
t = 1 is plotted in Figure 3. The density of oncoming traffic ρL is assumed
constant throughout the time.

4 Removal of road block

The road block is removed at dimensionless time t = 1. The initial condition for
the density distribution is given in Figure 3. We will investigate the maximum
length to which the tailback will grow and the time it takes for the effects of
the road block to dissipate.

The traffic density ρ and the traffic flux q = Q(ρ) satisfy the conservation
equation in dimensionless form

∂ρ

∂t
+

∂Q(ρ)

∂x
= 0 . (4.1)

Equation (4.1) can be written as

∂ρ

∂t
+

dQ

dρ

∂ρ

∂x
= 0 . (4.2)

Consider the traffic flow outside the road block. Then Q(ρ) = ρ(1 − ρ) and
(4.2) becomes

∂ρ

∂t
+ (1− 2ρ)

∂ρ

∂x
= 0 (4.3)

and this equation holds of all values of x when t > 1. The initial conditions
are

ρ(x, 1) = f(x) (4.4)

where f(x) is defined by Figure 3.
Using the theory of characteristic for first order quasi-linear partial differ-

ential equations ([1] to [5] it can be verified that the characteristic projections
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Figure 3: Traffic density profile after the road block has been
in place for time t with ρL = 3/8, λ = 1/2 and t=1.

on the (x, t) plane are the one-parameter family of straight lines

t− 1 =
x

1− 2f(σ)
− σ

1− 2f(σ)
, f(σ) 6= 1

2
(4.5)

x = σ , f(σ) =
1

2
(4.6)

and that on these lines

ρ(s, σ) = f(σ) , (4.7)

where σ is the parameter along the initial curve and s is the parameter along
the characteristic curves.
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The critical traffic density for maximum flux is ρL = 1/2. Light traffic
occurs when 0 < ρL < 1/2 and heavy traffic when 1/2 < ρL ≤ 1. The
evolution of the traffic when the road block is removed depends on whether
the traffic density is light, critical or heavy.

4.1 Light traffic

We first relate to the characteristic projections the left shock which forms
at the entrance to the road block. There are two families of characteristic
projections. The equation of the characteristics emanating from t = 0, x < 0,
is obtained by replacing t− 1 by t and f(σ) = ρL in (4.5):

t =
x

1− 2ρL
− σ

1− 2ρL
. (4.8)

Along the characteristic lines (4.8), ρ = ρL. The characteristics emanating
from the road block, x = 0, t > 0, are obtained from (4.5) by replacing t − 1
by t and f(σ) = ρB. Since ρA + ρB = 1 their equation can be written as

t = − x

(ρB − ρA)
+

σ

(ρB − ρA)
. (4.9)

The two families of characteristic projections intersect immediately and a shock
forms at x = 0, t = 0. Using the Rankine-Hugonoit condition we found that
the equation of this shock is (3.8) and is the straight line from the origin to
the point P in Figure 4.

When the road block is removed at time t = 1, the density distribution
is given by Figure 3. An expansion fan forms at the point (0, 1) in the (x, t)
plane. The equations of the characteristics in the fan are obtained from (4.5)
and (4.6) by putting σ = 0 and f(σ) = ρ where ρ takes all the values in the
range 1/4 ≤ ρ ≤ ρB :

t− 1 =
x

1− 2ρ
,

1

4
≤ ρ <

1

2
,

1

2
< ρ ≤ ρB , (4.10)

x = 0 , ρ =
1

2
. (4.11)

The limiting characteristics in the fan are, since ρA + ρB = 1,

ρ = ρB : t = 1− x

(ρB − ρA)
, (4.12)

ρ =
1

4
: t = 1 + 2x . (4.13)
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Figure 4: Light traffic. The characteristic projections and
shock curves on the (x, t) plane for ρL = 3/8 and λ = 1/2.
The left shock curve crosses the point x = 0 at tD = 12.
The dotted line starting at (0,1) is the dividing characteristic
(4.34).

Solving (4.10) for ρ gives for the traffic density in the fan

ρ =
t− 1− x

2(t− 1)
, t > 1 . (4.14)

When x = 0, ρ = 1/2 for t > 1. The traffic flux is therefore a maximum for
t > 1 at the point of entry to the road block when the road block is removed.
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The limiting characteristic (4.12) meets the shock line (3.8) at the point P ,

xP = −(ρL − ρA)(ρB − ρA)

(ρB − ρL)
, tP =

(

ρB − ρA
ρB − ρL

)

. (4.15)

At t = tP , x = xP , the strength of the shock starts to decrease because the
dissipation of the tailback has reached the shock discontinuity. The shock
curve now separates the characteristic projections (4.8) and (4.10) with

ρ− = ρL , ρ+ =
t− 1− SL(t)

2(t− 1)
. (4.16)

The Rankine-Hugoniot condition (3.7) yields the first order ordinary differen-
tial equation for the shock curve

dSL

dt
− 1

2(t− 1)
SL =

1

2
(1− 2ρL) . (4.17)

The solution of (4.17) subject to the initial condition t = tP , x = xP , is

SL(t) = (1− 2ρL)(t− 1)− 2
[

(ρL − ρA)(ρB − ρL)
]1/2

(t− 1)1/2 . (4.18)

The strength of the shock (4.18) is

∆ρ = ρ+ − ρ− =

[

(ρL − ρA)(ρB − ρL)

(t− 1)

]1/2

, (4.19)

which decreases steadily with time like (t−1)−1/2. The shock curve (4.18) which
starts at point P and the characteristic projections which intersect along the
curve are shown in Figure 4.

For large values of t− 1,

SL(t) ∼ 2

(

1

2
− ρL

)

(t− 1) , (4.20)

which is positive for light traffic. The left shock curve therefore reverses its
direction which occurs when

dSL

dt
= 0 . (4.21)

At this time the shock velocity is instantaneously zero. Equation (4.21) is
satisfied when

t− 1 =
(ρL − ρA)(ρB − ρL)

(1− 2ρL)2
(4.22)
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and occurs at the point

SLmin = −
(ρL − ρA)(ρB − ρL)

(1− 2ρL)
. (4.23)

The maximum length of the tailback after the road block has been removed
is, in dimensional units,

| S∗Lmin |=
(ρL − ρA)(ρB − ρL)

(1− 2ρL)
T ∗V ∗Lmax . (4.24)

The maximum length of the tailback is a linear function of T ∗, the time
the road block was in place and of V ∗Lmax, the speed limit on the open road.
The length of the tailback at time T ∗ when the road block is removed is given
by (3.9) with t∗ = T ∗. Thus

DL =
maximum length of tailback

length of tailback when road block is removed
=

ρB − ρL
1− 2ρL

. (4.25)

Graphs of | S∗Lmin | scaled by T ∗V ∗Lmax are plotted against ρL for
ρA ≤ ρL < 1/2 and for a range of values of λ in Figure 5. The maximum
length of the tailback increases as λ decreases because of the decrease in the
speed limit in the road block.

We will denote by tD the time when the left shock again passes through
the point x = 0 which was the position of the entrance to the road block when
it was in place. At this time the traffic build-up to the left of the road block
will have completely cleared. From (4.18), SL(t) = 0 when

tD − 1 =
4(ρL − ρA)(ρB − ρL)

(1− 2ρL)2
. (4.26)

The time difference (4.26) is four times the time taken after the road block
has been removed for the tailback to reach its maximum length, given by
(4.22). In Figure 6, the ratio of the time taken for the traffic build up to the
left of the road block to clear, to the time that the road block was in place,
is plotted against ρL for a range of values of λ. For ρL = 3/8 and λ = 1,
3/4, 1/2, 1/4 and 0, the ratio tD − 1 = 7, 9, 11, 13, and 15. For instance, if
ρL = 3/8 and λ = 1/2 and if the road block had been in place for T ∗ = 0.5 hr
then the traffic build up would require an additional 5.5 hours to clear. Using
the identities (3.5), equation (4.26) can be expressed in the alternative form
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Figure 5: Road block removed. Maximum length of the tail-
back, scaled by T ∗V ∗Lmax, plotted against the trafic density on
the open road ρA ≤ ρL < 1/2 and for a range of values of λ.

tD =

(

1− λ

2

)

1

(1− 2ρL)2
. (4.27)

By putting λ = 0 in (4.27) the time at which the build up of traffic at a
red traffic light clears is rederived [2]. At time tD the traffic density at x = 0
suddenly decreases from the critical value ρ = 1/2 which existed for 1 ≤ t ≤ tD
to the value ρL, the traffic density before the road block was put in place.
An observer at x = 0 would record the time tD as the time that the traffic
congestion caused by the road block finally cleared. For 1 ≤ t ≤ tD this
observer would have seen maximum traffic flux at x = 0.
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Figure 6: Ratio of the additional time taken for the effects
of the road block to clear to the time the road block was in
place, tD − 1, plotted against ρL for ρA ≤ ρL < 1/2 and for a
range of values of λ.

Consider now the shock structure to the right of the road block. We will
make the approximation that the time spent in the road block is much less
than the time that the road block is in place, that is L∗ ≪ T ∗V ∗Rmax. The road
block can then be approximated by the point x = 0, t = 0, in the (x, t) plane.
The presence of the road block still determines the structure of the (x, t) plane
through the traffic densities ρA and ρB.

Consider first the right shock, x = SR(t), which forms at the exit to the
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road block, x = 0. There are two families of characteristic projections. The
equation of the characteristics emanating from t = 0, x > 0, are again given
by (4.7). Along these characteristics, ρ = ρL. The characteristics emanating
from the road block, x = 0, t > 0, are obtained from (4.5) by replacing t − 1
by t and f(σ) = ρA. Since ρA + ρB = 1, this family can be written as

t =
x

ρB − ρA
− σ

ρB − ρA
(4.28)

and compares with the family (4.9) for the left shock. Along the characteristics
(4.28), ρ = ρA. The two families of characteristics, (4.8) and (4.28), intersect
immediately and a shock forms at x = 0, t = 0. The equation of the shock
curve is, from the Rankine-Hugoniot condition (3.7) and the initial condition
SR(0) = 0,

SR(t) = (ρB − ρL)t . (4.29)

Because the road block is approximated by a point at the origin, (4.29) re-
places the shock equation (3.11). The shock (4.29) propagates in the positive
x-direction and is represented by the straight line from the origin to Q in
Figure 4.

Since the road block is approximated by a point the density in the expansion
fan decreases from ρB directly to ρA instead of from ρB to 1/4 and from 1/4
to ρA. Instead of (4.13), the limiting characteristic in the fan is

t = 1 +
x

ρB − ρA
. (4.30)

The limiting characteristic (4.30) meets the shock line (4.29) at the point Q,

xQ =
(ρB − ρL)(ρB − ρA)

(ρL − ρA)
, tQ =

(ρB − ρA)

(ρL − ρA)
. (4.31)

Since 0 < ρL < 1/2, tQ > tP and xQ >| xP |. At the point Q the strength of the
right shock starts to decrease because the lead vehicle has caught up with the
shock discontinuity. The right shock separates the families of characteristics
(4.8) and (4.10) as for the left shock but instead of (4.16),

ρ− =
t− 1− SR(t)

2(t− 1)
, ρ+ = ρL . (4.32)

The Rankine-Hugonoit condition again gives the differential equation (4.17)
and the solution subject to the initial condition t = tQ, x = xQ is

SR(t) = (1− 2ρL)(t− 1) + 2
[

(ρL − ρA)(ρB − ρL)
]1/2

(t− 1)1/2 . (4.33)
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The limiting characteristic (4.12) meets the shock line (3.8) at the point P ,

xP = −(ρL − ρA)(ρB − ρA)

(ρB − ρL)
, tP =

(

ρB − ρA
ρB − ρL

)

. (4.15)

At t = tP , x = xP , the strength of the shock starts to decrease because the
dissipation of the tailback has reached the shock discontinuity. The shock
curve now separates the characteristic projections (4.8) and (4.10) with

ρ− = ρL , ρ+ =
t− 1− SL(t)

2(t− 1)
. (4.16)

The Rankine-Hugoniot condition (3.7) yields the first order ordinary differen-
tial equation for the shock curve

dSL

dt
− 1

2(t− 1)
SL =

1

2
(1− 2ρL) . (4.17)

The solution of (4.17) subject to the initial condition t = tP , x = xP , is

SL(t) = (1− 2ρL)(t− 1)− 2
[

(ρL − ρA)(ρB − ρL)
]1/2

(t− 1)1/2 . (4.18)

The strength of the shock (4.18) is

∆ρ = ρ+ − ρ− =

[

(ρL − ρA)(ρB − ρL)

(t− 1)

]1/2

, (4.19)

which decreases steadily with time like (t−1)−1/2. The shock curve (4.18) which
starts at point P and the characteristic projections which intersect along the
curve are shown in Figure 4.

For large values of t− 1,

SL(t) ∼ 2

(

1

2
− ρL

)

(t− 1) , (4.20)

which is positive for light traffic. The left shock curve therefore reverses its
direction which occurs when

dSL

dt
= 0 . (4.21)

At this time the shock velocity is instantaneously zero. Equation (4.21) is
satisfied when

t− 1 =
(ρL − ρA)(ρB − ρL)

(1− 2ρL)2
(4.22)
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and occurs at the point

SLmin = −
(ρL − ρA)(ρB − ρL)

(1− 2ρL)
. (4.23)

The maximum length of the tailback after the road block has been removed
is, in dimensional units,

| S∗Lmin |=
(ρL − ρA)(ρB − ρL)

(1− 2ρL)
T ∗V ∗Lmax . (4.24)

The maximum length of the tailback is a linear function of T ∗, the time
the road block was in place and of V ∗Lmax, the speed limit on the open road.
The length of the tailback at time T ∗ when the road block is removed is given
by (3.9) with t∗ = T ∗. Thus

DL =
maximum length of tailback

length of tailback when road block is removed
=

ρB − ρL
1− 2ρL

. (4.25)

Graphs of | S∗Lmin | scaled by T ∗V ∗Lmax are plotted against ρL for
ρA ≤ ρL < 1/2 and for a range of values of λ in Figure 5. The maximum
length of the tailback increases as λ decreases because of the decrease in the
speed limit in the road block.

We will denote by tD the time when the left shock again passes through
the point x = 0 which was the position of the entrance to the road block when
it was in place. At this time the traffic build-up to the left of the road block
will have completely cleared. From (4.18), SL(t) = 0 when

tD − 1 =
4(ρL − ρA)(ρB − ρL)

(1− 2ρL)2
. (4.26)

The time difference (4.26) is four times the time taken after the road block
has been removed for the tailback to reach its maximum length, given by
(4.22). In Figure 6, the ratio of the time taken for the traffic build up to the
left of the road block to clear, to the time that the road block was in place,
is plotted against ρL for a range of values of λ. For ρL = 3/8 and λ = 1,
3/4, 1/2, 1/4 and 0, the ratio tD − 1 = 7, 9, 11, 13, and 15. For instance, if
ρL = 3/8 and λ = 1/2 and if the road block had been in place for T ∗ = 0.5 hr
then the traffic build up would require an additional 5.5 hours to clear. Using
the identities (3.5), equation (4.26) can be expressed in the alternative form
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Figure 5: Road block removed. Maximum length of the tail-
back, scaled by T ∗V ∗Lmax, plotted against the trafic density on
the open road ρA ≤ ρL < 1/2 and for a range of values of λ.

tD =

(

1− λ

2

)

1

(1− 2ρL)2
. (4.27)

By putting λ = 0 in (4.27) the time at which the build up of traffic at a
red traffic light clears is rederived [2]. At time tD the traffic density at x = 0
suddenly decreases from the critical value ρ = 1/2 which existed for 1 ≤ t ≤ tD
to the value ρL, the traffic density before the road block was put in place.
An observer at x = 0 would record the time tD as the time that the traffic
congestion caused by the road block finally cleared. For 1 ≤ t ≤ tD this
observer would have seen maximum traffic flux at x = 0.
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Figure 6: Ratio of the additional time taken for the effects
of the road block to clear to the time the road block was in
place, tD − 1, plotted against ρL for ρA ≤ ρL < 1/2 and for a
range of values of λ.

Consider now the shock structure to the right of the road block. We will
make the approximation that the time spent in the road block is much less
than the time that the road block is in place, that is L∗ ≪ T ∗V ∗Rmax. The road
block can then be approximated by the point x = 0, t = 0, in the (x, t) plane.
The presence of the road block still determines the structure of the (x, t) plane
through the traffic densities ρA and ρB.

Consider first the right shock, x = SR(t), which forms at the exit to the
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road block, x = 0. There are two families of characteristic projections. The
equation of the characteristics emanating from t = 0, x > 0, are again given
by (4.7). Along these characteristics, ρ = ρL. The characteristics emanating
from the road block, x = 0, t > 0, are obtained from (4.5) by replacing t − 1
by t and f(σ) = ρA. Since ρA + ρB = 1, this family can be written as

t =
x

ρB − ρA
− σ

ρB − ρA
(4.28)

and compares with the family (4.9) for the left shock. Along the characteristics
(4.28), ρ = ρA. The two families of characteristics, (4.8) and (4.28), intersect
immediately and a shock forms at x = 0, t = 0. The equation of the shock
curve is, from the Rankine-Hugoniot condition (3.7) and the initial condition
SR(0) = 0,

SR(t) = (ρB − ρL)t . (4.29)

Because the road block is approximated by a point at the origin, (4.29) re-
places the shock equation (3.11). The shock (4.29) propagates in the positive
x-direction and is represented by the straight line from the origin to Q in
Figure 4.

Since the road block is approximated by a point the density in the expansion
fan decreases from ρB directly to ρA instead of from ρB to 1/4 and from 1/4
to ρA. Instead of (4.13), the limiting characteristic in the fan is

t = 1 +
x

ρB − ρA
. (4.30)

The limiting characteristic (4.30) meets the shock line (4.29) at the point Q,

xQ =
(ρB − ρL)(ρB − ρA)

(ρL − ρA)
, tQ =

(ρB − ρA)

(ρL − ρA)
. (4.31)

Since 0 < ρL < 1/2, tQ > tP and xQ >| xP |. At the point Q the strength of the
right shock starts to decrease because the lead vehicle has caught up with the
shock discontinuity. The right shock separates the families of characteristics
(4.8) and (4.10) as for the left shock but instead of (4.16),

ρ− =
t− 1− SR(t)

2(t− 1)
, ρ+ = ρL . (4.32)

The Rankine-Hugonoit condition again gives the differential equation (4.17)
and the solution subject to the initial condition t = tQ, x = xQ is

SR(t) = (1− 2ρL)(t− 1) + 2
[

(ρL − ρA)(ρB − ρL)
]1/2

(t− 1)1/2 . (4.33)
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The strength of the shock is again given by (4.19). Since 1 − 2ρL > 0 the
shock does not reverse its direction but continues indefinitely in the positive
x-direction as shown in Figure 4. The strength of the density discontinuity
weakens with time like (t − 1)−1/2 but since the shock never returns to the
position of the road block the shock discontinuity behind the road block never
clears.

The characteristics in the expansion fan separate into two sets. The mem-
bers of one set intersect the left shock and the members of the other set intersect
the right shock. The equation of the dividing characteristic is

t = 1 +
x

1− 2ρL
(4.34)

which has the same gradient as the left and right shock curves as t→∞. It is
parallel to the characteristic lines outside the region between the shock curves.
Along the dividing characteristic, ρ = ρL and the velocity of the traffic is the
same as on the open road. The dividing characteristic is shown as the dotted
line in Figure 4.

Finally consider the density profile at a time t > 1. The dissipation of the
line of vehicles in front of the road block reaches the left shock at time tP and
the lead vehicle catches up with the right shock at time tQ. Since 0 < ρL < 1/2
for light traffic, tP < tQ and the dissipation of the line of vehicles reaches the
left shock before the lead vehicle catches up with the right shock. The traffic
density at x = 0 jumps from ρ = 1/2 to ρ = ρL at time tD defined by (4.27).
The density profile for light traffic after the road block has been removed is
illustrated in Figure 7 for ρL = 3/8, λ = 1/2 and a range of values of time.
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Figure 7: Light traffic. Traffic density plotted against x for
ρL = 3/8, λ = 1/2 and t = 1, t = tP = 1.553, t = tQ = 2.809,
t = 3.763, t = tD = 12 and t = 15. The length of the tailback
is maximum at t = 3.763.
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4.2 Critical traffic flux, ρL = 1/2

When ρL = 1/2 the traffic flux is critical The characteristic projections starting
from the line t = 0, −∞ < x < ∞, are now the vertical lines, x = σ(−∞ <
σ < ∞) and along the characteristics ρL = 1/2. The equations of the shocks
which form at x = 0, t = 0 are

SL(t) = −
1

2
(ρB − ρA)t , SR(t) =

1

2
(ρB − ρA)t . (4.35)

The left shock changes at the point P ,

xP = −(ρB − ρA) , tP = 2 , (4.36)

to the shock

SL(t) = −(ρB − ρA)
[

(t− 1)
]1/2

, (4.37)

while at
xQ = +(ρB − ρA) , tQ = 2 , (4.38)

the right shock changes to

SR(t) = +(ρB − ρA)
[

(t− 1)
]1/2

. (4.39)

The dividing characteristic in the fan is the vertical line x = 0, t ≥ 1. The
right shock travels forwards indefinitely while the left shock travels backwards
indefinitely. The two shocks never return to the position where the road block
was in place and the discontinuities in traffic density caused by the road block
never disappear.

The characteristic projections and shock curves in the (x, t) plane and
the density profiles for ρL = 1/2 after the road block has been removed are
illustrated in Figures 8 and 9.

4.3 Heavy traffic

The equations of the characteristic projections and the shock curves are the
same as for light traffic but now 1/2 < ρL < 1. The diagram for the charac-
teristic projections and shock curves for light traffic is reversed as shown in
Figure 10. The results, which are exactly the same if we replace ρL by 1− ρL,
x by −x and SR(t) by SL(t) in the equations for light traffic, are shown in
Figure 11. We see clearly the asymmetry between Figure 7 and Figure 11.
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Figure 8: Critical traffic flux. The characteristic projections
and shock curves in the (x, t) plane for ρL = 1/2 and λ = 1/2.
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Figure 9: Critical traffic flux. Traffic density plotted against
x for ρL = 1/2, λ = 1/2 and t = 1, t = 1.5, t = tP = tQ = 2
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Figure 11: Heavy traffic. Traffic density plotted against x for ρL = 5/8,
λ = 1/2 and t = 1, t = tQ = 1.553, t = tP = 2.809, t = 3.763. t = tD = 12
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5 Conclusions

In the model used in this paper, the effect of the road block on the traffic
depended on three parameters, the density of the oncoming traffic ρL, the
time T ∗ the road block was in place and the ratio λ of the speed limit in the
road block to the speed limit in the open road.

The density ρL cannot be adjusted by the traffic authorities at the road
block. We found from the graphs plotted against ρL that the effects of the road
block on the traffic flow depend strongly on ρL and that there are significant
differences between the flow of light traffic and heavy traffic. Usually the traffic
on an open road will be ‘light’ and we have therefore considered this case in
most detail. The parameters T ∗ and λ, however, can be adjusted by the traffic
authorities at the road block. The length of the tailback and the time taken for
the congestion caused by the road block to clear can be reduced by reducing T ∗

and increasing λ. When the traffic flux through the road block is maximised
the traffic density in the road is ρR = 1/4 and the traffic velocity is one half
the speed limit. The speed limit in the road block can therefore be set at twice
the maximum practical speed for a vehicle to be waved down and stopped in
the road block.

In the model considered here the traffic velocity depended linearly on the
traffic density. It gave analytical results for all quantities and yielded qualita-
tive insights into the effect of the road block on the traffic flow which should
be helpful in managing the road block. More accurate quantitative predic-
tions may require more sophisticated models in which the traffic velocity may
depend on a power of the traffic density or on the density gradient [3, 5].
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